Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Opt Express ; 32(6): 10679-10689, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571273

RESUMO

We present the first mid-infrared optical frequency comb spectrometer employing an absorption cell based on self-fabricated, all-silica antiresonant hollow-core fiber (ARHCF). The spectrometer is capable of measuring sub-mL sample volumes with 26 m interaction length and noise equivalent absorption sensitivity of 8.3 × 10-8 cm-1 Hz-1/2 per spectral element in the range of 2900 cm-1 to 3100 cm-1. Compared to a commercially available multipass cell, the ARHCF offers a similar interaction length in a 1000 times lower gas sample volume and a 2.8 dB lower transmission loss, resulting in better absorption sensitivity. The broad transmission windows of ARHCFs, in combination with a tunable optical frequency comb, make them ideal for multispecies detection, while the prospect of measuring samples in small volumes makes them a competitive technique to photoacoustic spectroscopy along with the robustness and prospect of coiling the ARHCFs open doors for miniaturization and out-of-laboratory applications.

2.
Opt Lett ; 49(16): 4597-4600, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146113

RESUMO

Multiphoton microscopes employ femtosecond lasers as light sources because the high peak power of the ultrashort pulse allows for multiphoton excitation of fluorescence in the examined sample. However, such short pulses are susceptible to broadening in a microscope's highly dispersive optical elements and require careful dispersion management, otherwise decreasing excitation efficiency. Here, we have developed a 10 nJ Yb:fiber picosecond laser with an integrated pulse picker unit and evaluated its performance in multiphoton microscopy. Our results show that performance comparable to femtosecond pulses can be obtained with picosecond pulses only by reducing the pulse repetition rate and that such pulses are significantly less prone to the effect of chromatic dispersion. These findings proved that the temporal pulse compression is not always efficient, and it can be omitted by using a smaller and easier-to-use all-fiber setup.

3.
Opt Express ; 31(17): 27667-27676, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710837

RESUMO

We characterized and analyzed the effect of intracavity spectral filtering in the Er:fiber laser mode-locked with a semiconductor saturable absorber mirror (SESAM). We studied the dispersive properties of bandpass filters and their influence on the characteristics of generated soliton pulses. Our analysis showed that various sideband structures were induced by the filter dispersion profiles and shaped through the interaction of the soliton with the dispersive wave. In addition, intracavity filtering improved the intensity and phase noise of the laser significantly, and we showed optimal filtering conditions for both types of noise. By adding a 10 nm bandpass filter to the laser resonator, the intensity and phase noise were improved 2- and 2.6 times, respectively.

4.
Opt Express ; 29(2): 2690-2702, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726460

RESUMO

We report an investigation of dispersion management of an all-polarization-maintaining Er-fiber oscillator mode-locked via a nonlinear amplification loop mirror in a figure-nine cavity configuration with two output ports. The performance of the laser was investigated within the net cavity dispersion ranging from -0.034 ps2 to +0.006 ps2. We show that the spectral and temporal phase of the pulses at both figure-nine outputs have clearly different characteristics. One of the laser outputs provides pulses with significantly better quality; nonetheless, the rejection output also offers ultrashort pulses with broad spectra. Pulses as short as 79 fs with an energy of 83 pJ were generated directly from the laser in the near-zero dispersion regime.

5.
Opt Express ; 29(12): 18122-18138, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154078

RESUMO

We present a direct comparison between two types of femtosecond 2 µm sources used for seeding of an ultrafast thulium-doped fiber amplifier based on all-normal dispersion supercontinuum and soliton self-frequency shift. Both nonlinear effects were generated in microstructured silica fibers, pumped with low-power femtosecond pulses at 1.56 µm originating from an erbium-doped fiber laser. We performed a full characterization of both nonlinear processes, including their shot-to-shot stability, phase coherence, and relative intensity noise. The results revealed that the solitons show comparable performance to supercontinuum in terms of relative intensity noise and shot-to-shot stability, despite the anomalous dispersion regime. Both sources can be successfully used as seeds for Tm-doped fiber amplifiers as an alternative to Tm-doped oscillators. The results show that the sign of chromatic dispersion of the fiber is not crucial for obtaining a stable, high-quality, and low-noise spectral conversion process when pumped with sub-50 fs laser pulses.

6.
Opt Express ; 29(19): 30155-30167, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614744

RESUMO

We present a new design of a robust cavity-enhanced frequency comb-based spectrometer operating under the continuous-filtering Vernier principle. The spectrometer is based on a compact femtosecond Er-doped fiber laser, a medium finesse cavity, a diffraction grating, a custom-made moving aperture, and two photodetectors. The new design removes the requirement for high-bandwidth active stabilization present in the previous implementations of the technique, and allows scan rates up to 100 Hz. We demonstrate the spectrometer performance over a wide spectral range by detecting CO2 around 1575 nm (1.7 THz bandwidth and 6 GHz resolution) and CH4 around 1650 nm (2.7 THz bandwidth and 13 GHz resolution). We achieve absorption sensitivity of 5 × 10-9 cm-1 Hz-1/2 at 1575 nm, and 1 × 10-7 cm-1 Hz-1/2 cm-1 at 1650 nm. We discuss the influence of the scanning speed above the adiabatic limit on the amplitude of the absorption signal.

7.
Opt Lett ; 46(15): 3677-3680, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329254

RESUMO

Dual-comb (DC) ranging is an established method for high-precision and high-accuracy distance measurements. It is, however, restricted by an inherent length ambiguity and the requirement for complex control loops for comb stabilization. Here, we present a simple approach for expanding the ambiguity-free measurement length of DC ranging by exploiting the intrinsic intensity modulation of a single-cavity dual-color DC for simultaneous time-of-flight and DC distance measurements. This measurement approach enables the measurement of distances up to several hundred kilometers with the precision and accuracy of a DC interferometric setup while providing a high data acquisition rate (≈2kHz) and requiring only the repetition rate of one of the combs to be stabilized.

8.
Phys Rev Lett ; 126(6): 063001, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635699

RESUMO

We report the first measurement of sub-Doppler molecular response using a frequency comb by employing the comb as a probe in optical-optical double-resonance spectroscopy. We use a 3.3 µm continuous wave pump and a 1.67 µm comb probe to detect sub-Doppler transitions to the 2ν_{3} and 3ν_{3} bands of methane with ∼1.7 MHz center frequency accuracy. These measurements provide the first verification of the accuracy of theoretical predictions from highly vibrationally excited states, needed to model the high-temperature spectra of exoplanets. Transition frequencies to the 3ν_{3} band show good agreement with the TheoReTS line list.

9.
Opt Express ; 27(26): 37435-37445, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878523

RESUMO

A compact and robust all-fiber difference frequency generation-based source of broadband mid-infrared radiation is presented. The source emits tunable radiation in the range between 6.5 µm and 9 µm with an average output power up to 5 mW at 125 MHz repetition frequency. The all-in-fiber construction of the source along with active stabilization techniques results in long-term repetition rate stability of 3 Hz per 10 h and a standard deviation of the output power better than 0.8% per 1 h. The applicability of the presented source to laser spectroscopy is demonstrated by measuring the absorption spectrum of nitrous oxide (N2O) around 7.8 µm. The robustness and good long- and short-term stability of the source opens up for applications outside the laboratory.

10.
Opt Express ; 26(9): 11756-11763, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716094

RESUMO

We report the first fully fiberized difference frequency generation (DFG) source, delivering a broadly tunable idler in the 6 to 9 µm spectral range, using an orientation-patterned gallium phosphide (OP-GaP) crystals with different quasi-phase matching periods (QPM). The mid-infrared radiation (MIR) is obtained via mixing of the output of a graphene-based Er-doped fiber laser at 1.55 µm with coherent frequency-shifted solitons at 1.9 µm generated in a highly nonlinear fiber using the same seed. The presented setup is the first truly all-fiber, all-polarization maintaining, alignment-free DFG source reported so far. Its application to laser spectroscopy was demonstrated by the absorption spectrum measurement of ν4 band of methane in 7.5 - 8.3 µm spectral range. The system simplicity and compactness paves the way for applications in field-deployable optical frequency comb spectroscopy systems for gas sensing.

11.
Opt Lett ; 42(9): 1748-1751, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28454151

RESUMO

We demonstrate a broadband mid-infrared (MIR) frequency comb source based on difference frequency generation (DFG) in periodically poled lithium niobate crystal. MIR radiation is obtained via mixing of the output of a 125 MHz repetition rate Yb-doped fiber laser with Raman-shifted solitons generated from the same source in a highly nonlinear fiber. The resulting idler is tunable in the range of 2.7-4.2 µm, with average output power reaching 237 mW and pulses as short as 115 fs. The coherence of the MIR comb is confirmed by spectral interferometry and heterodyne beat measurements. Applicability of the developed DFG source for laser spectroscopy is demonstrated by measuring absorption spectrum of acetylene at 3.0-3.1 µm.

12.
Opt Lett ; 42(8): 1592-1595, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28409806

RESUMO

In this Letter, we demonstrate an all-polarization-maintaining, stretched-pulse Tm-doped fiber laser generating ∼200 fs pulses centered at 1945 nm. As a saturable absorber, a graphene/poly(methyl methacrylate) composite was used. To the best of our knowledge, this is the first demonstration of stretched-pulse operation of a graphene-based fiber laser at 2 µm.

13.
Opt Express ; 24(6): 6156-61, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136809

RESUMO

We report generation of ultra-broadband dissipative solitons and noise-like pulses from a simple, fully fiberized mode-locked Tm-doped fiber laser. The oscillator operates in the normal net dispersion regime and is mode-locked via nonlinear polarization evolution. Depending on the cavity dispersion, the laser was capable of generating 60 nm or 100 nm broad dissipative solitons. These are the broadest spectra generated from a normal dispersion mode-locked Tm-doped fiber laser so far. The same oscillator might also operate in the noise-like pulse regime with extremely broad emission spectra (over 300 nm), which also significantly outperforms the previous reports.

14.
Opt Express ; 24(18): 20359-64, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27607642

RESUMO

We report on the generation of noise-like pulse (NLP) trains in a Tm-doped fiber laser mode-locked by multilayer graphene saturable absorber. The spectral bandwidth obtained directly from the oscillator exceeds 60 nm, centered at 1950 nm, with 23.5 MHz repetition rate. The pulses were also amplified in a fully fiberized amplifier based on a double-cladding Tm-doped fiber. The system was capable of delivering 1.21 W of average power, which corresponds to 51.5 nJ energy stored in the noise-like bundle. We believe that the presented source might serve as a pump for supercontinuum generation in highly nonlinear fibers.

15.
Opt Express ; 24(26): 30523-30536, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059400

RESUMO

For the first time to our knowledge, we demonstrate a coherent supercontinuum in silica fibers reaching 2.2 µm in a long wavelength range. The process of supercontinuum generation was studied experimentally and numerically in two microstructured fibers with a germanium doped core, having flat all-normal chromatic dispersion optimized for pumping at 1.55 µm. The fibers were pumped with two pulse lasers operating at 1.56 µm with different pulse duration times equal respectively to 23 fs and 460 fs. The experimental results are in a good agreement with the simulations conducted by solving the generalized nonlinear Schrödinger equation with the split-step Fourier method. The simulations also confirmed high coherence of the generated spectra and revealed that their long wavelength edge (2.2 µm) is related to OH contamination. Therefore, improving the fibers purity will result in further up-shift of the long wavelength spectra limit.

16.
Opt Lett ; 41(11): 2592-5, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27244422

RESUMO

In this Letter, we demonstrate a graphene mode-locked, all-fiber Ho-doped fiber laser generating 1.3 nJ energy pulses directly from the oscillator. The graphene used as a saturable absorber was obtained via chemical vapor deposition on copper substrate and immersed in a poly(methyl methacrylate) support. The laser generated ultrashort soliton pulses at 2080 nm with bandwidth up to 6.1 nm. The influence of the output coupling ratio and the SA modulation depth on the mode-locking performance was also investigated.

17.
Opt Express ; 23(25): 32080-6, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26698999

RESUMO

First demonstration of a dissipative soliton resonance (DSR), double-clad (DC) active fiber, mode-locked figure-8 laser (F8L) enabling simultaneous amplification of 1064 nm seed signal is presented. Appropriate design supported peak power clamping (PPC) effect in the laser resonator and enabled easy tuning of the generated, square-shaped pulses from 20 ns to 170 ns. By incorporating a circulator-based isolating element in the directional loop of the laser, record pulse energy of 2.13 µJ was achieved, directly at the output of the resonator. The usability of the unique dual-wavelength design was experimentally put to a test in a difference frequency generation (DFG) setup using periodically poled lithium niobate (PPLN) crystal.

18.
Opt Express ; 23(21): 27503-8, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480410

RESUMO

In this paper a stretched-pulse, mode-locked Er-doped fiber laser based on graphene saturable absorber (SA) is presented. A 60 layer graphene/polymer composite was used as a SA. The all-fiber dispersion managed laser resonator with the repetition frequency of 21.15 MHz allows for Gaussian pulses generation with the full width at half maximum (FWHM) of 48 nm. The generated chirped pulses were compressed outside the cavity to the 88 fs using a piece of standard single mode fiber. The average output power and pulse energy were of 1.5 mW and 71 pJ, respectively.

19.
Opt Express ; 23(24): 31446-51, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26698769

RESUMO

We report on generation of 260 fs-short pulses with energy of 1.1 nJ from a fully fiberized, monolithic Tm-doped fiber laser system. The design comprises a simple, graphene-based ultrafast oscillator and an integrated all-fiber chirped pulse amplifier (CPA). The system generates 110 mW of average power at 100.25 MHz repetition rate and central wavelength of 1968 nm. This is, to our knowledge, the highest pulse energy generated from a fully fiberized sub-300 fs Tm-doped laser, without the necessity of using grating-based dispersion compensation. Such compact, robust and cost-effective system might serve as a seed source for nonlinear frequency conversion or mid-infrared supercontinuum generation.

20.
Opt Express ; 23(7): 9339-46, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968764

RESUMO

We report an all-fiber, all-polarization maintaining (PM) ultrafast Tm-doped fiber laser mode-locked by a multilayer graphene-based saturable absorber (SA). The laser emits 603 fs-short pulses centered at 1876 nm wavelength with 6.6 nm of bandwidth and 41 MHz repetition rate. Graphene used as saturable absorber was obtained via chemical vapor deposition (CVD) on copper substrate and immersed in a poly(methylmethacrylate) (PMMA) support, forming a stable, free-standing foil containing 12 graphene layers, suitable for the use in a fiber laser. The generated 603 fs pulses are the shortest reported pulses achieved from a Tm-doped laser mode-locked by graphene saturable absorber so far. Additionally, this is the first demonstration of an all-PM Tm-doped fiber laser incorporating a graphene-based SA. Such cost-effective, compact and stable fiber lasers might be considered as sources usable in nonlinear frequency conversion, mid-infrared spectroscopy and remote sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA