Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(9): 3827-3834, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33886314

RESUMO

Sustainability has become a critical concern in the semiconductor industry as hazardous wastes released during the manufacturing process of semiconductor devices have an adverse impact on human beings and the environment. The use of hazardous solvents in existing fabrication processes also restricts the use of polymer substrates because of their low chemical resistance to such solvents. Here, we demonstrate an environmentally friendly mechanical, bilayer lithography that uses just water for development and lift-off. We show that we are able to create arbitrary patterns achieving resolution down to 310 nm. We then demonstrate the use of this technique to create functional devices by fabricating a MoS2 photodetector on a polyethylene terephthalate (PET) substrate with measured response times down to 42 ms.


Assuntos
Impressão , Água , Humanos , Polímeros , Semicondutores
2.
Nano Lett ; 20(2): 1067-1073, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31904977

RESUMO

Confining electric fields to a nanoscale region is challenging yet crucial for applications such as high-resolution probing of electrical properties of materials and electric-field manipulation of nanoparticles. State-of-the-art techniques involving atomic force microscopy typically have a lateral resolution limit of tens of nanometers due to limitations in the probe geometry and stray electric fields that extend over space. Engineering the probes is the most direct approach to improving this resolution limit. However, current methods to fabricate high-resolution probes, which can effectively confine the electric fields laterally, involve expensive and sophisticated probe manipulation, which has limited the use of this approach. Here, we demonstrate that nanoscale phase switching of configurable thin films on probes can result in high-resolution electrical probes. These configurable coatings can be both germanium-antimony-tellurium (GST) as well as amorphous-carbon, materials known to undergo electric field-induced nonvolatile, yet reversible switching. By forming a localized conductive filament through phase transition, we demonstrate a spatial resolution of electrical field beyond the geometrical limitations of commercial platinum probes (i.e., an improvement of ∼48%). We then utilize these confined electric fields to manipulate nanoparticles with single nanoparticle precision via dielectrophoresis. Our results advance the field of nanomanufacturing and metrology with direct applications for pick and place assembly at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA