Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Geophys Res Lett ; 43(16): 8376-8383, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28408771

RESUMO

Present-day Venus is an inhospitable place with surface temperatures approaching 750K and an atmosphere 90 times as thick as Earth's. Billions of years ago the picture may have been very different. We have created a suite of 3-D climate simulations using topographic data from the Magellan mission, solar spectral irradiance estimates for 2.9 and 0.715 Gya, present-day Venus orbital parameters, an ocean volume consistent with current theory, and an atmospheric composition estimated for early Venus. Using these parameters we find that such a world could have had moderate temperatures if Venus had a rotation period slower than ~16 Earth days, despite an incident solar flux 46-70% higher than Earth receives. At its current rotation period, Venus's climate could have remained habitable until at least 715 million years ago. These results demonstrate the role rotation and topography play in understanding the climatic history of Venus-like exoplanets discovered in the present epoch.

2.
Astrophys J ; 884(1)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33100349

RESUMO

The potential habitability of known exoplanets is often categorized by a nominal equilibrium temperature assuming a Bond albedo of either ∼0.3, similar to Earth, or 0. As an indicator of habitability, this leaves much to be desired, because albedos of other planets can be very different, and because surface temperature exceeds equilibrium temperature due to the atmospheric greenhouse effect. We use an ensemble of general circulation model simulations to show that for a range of habitable planets, much of the variability of Bond albedo, equilibrium temperature and even surface temperature can be predicted with useful accuracy from incident stellar flux and stellar temperature, two known parameters for every confirmed exoplanet. Earth's Bond albedo is near the minimum possible for habitable planets orbiting G stars, because of increasing contributions from clouds and sea ice/snow at higher and lower instellations, respectively. For habitable M star planets, Bond albedo is usually lower than Earth's because of near-IR H2O absorption, except at high instellation where clouds are important. We apply relationships derived from this behavior to several known exoplanets to derive zeroth-order estimates of their potential habitability. More expansive multivariate statistical models that include currently non-observable parameters show that greenhouse gas variations produce significant variance in albedo and surface temperature, while increasing length of day and land fraction decrease surface temperature; insights for other parameters are limited by our sampling. We discuss how emerging information from global climate models might resolve some degeneracies and help focus scarce observing resources on the most promising planets.

3.
Sci Rep ; 3: 2013, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23774736

RESUMO

The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21(st) century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA