Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(1): 211-220, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38154121

RESUMO

Surfactants provide detergency, foaming, and texture in personal care formulations, yet the micellization of typical industrial primary and cosurfactants is not well understood, particularly in light of the polydisperse nature of commercial surfactants. Synergistic interactions are hypothesized to drive the formation of elongated wormlike self-assemblies in these mixed surfactant systems. Small-angle neutron scattering, rheology, and pendant drop tensiometry are used to examine surface adsorption, viscoelasticity, and self-assembly structure for wormlike micellar formulations comprising cocoamidopropyl betaine, and its two major components laurylamidopropyl betaine and oleylamidopropyl betaine, with sodium alkyl ethoxy sulfates. The tail length of sodium alkyl ethoxy sulfates was related to their ability to form wormlike micelles in electrolyte solutions, indicating that a tail length greater than 10 carbons is required to form wormlike micelles in NaCl solutions, with the decyl homologue unable to form elongated micelles and maintaining a low viscosity even at 20 wt % surfactant loading with 4 wt % NaCl present. For these systems, the incorporation of a disperse ethoxylate linker does not enable shorter chain surfactants to elongate into wormlike micelles for single-component systems; however, it could increase the interactions between surfactants in mixed surfactant systems. For synergy in surfactant mixing, the nonideal regular solution theory is used to study the sulfate/betaine mixtures. Tail mismatch appears to drive lower critical micelle concentrations, although tail matching improves synergy with larger relative reductions in critical micelle concentrations and greater micelle elongation, as seen by both tensiometric and scattering measurements.

2.
Langmuir ; 38(24): 7522-7534, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35678153

RESUMO

Azobenzene-containing surfactants (azo-surfactants) have garnered significant attention for their use in generating photoresponsive foams, interfaces, and colloidal systems. The photoresponsive behavior of azo-surfactants is driven by the conformational and electronic changes that occur when the azobenzene chromophore undergoes light-induced trans ⇌ cis isomerization. Effective design of surfactants and targeting of their properties requires a robust understanding of how the azobenzene functionality interacts with surfactant structure and influences overall surfactant behavior. Herein, a library of tail substituted azo-surfactants were synthesized and studied to better understand how surfactant structure can be tailored to exploit the azobenzene photoswitch. This work shows that tail group structure (length and branching) has a profound influence on the critical micelle concentration of azo-surfactants and their properties once adsorbed to an air-water interface. Neutron scattering studies revealed the unique role that intermolecular π-π azobenzene interactions have on the self-assembly of azo-surfactants, and how the influence of these interactions can be tuned using tail group structure to target specific aqueous aggregate morphologies.

3.
Langmuir ; 36(47): 14296-14305, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33202134

RESUMO

Concentrated wormlike micellar fluids form the basis for a vast array of formulated products, from liquid soaps and shampoos to drag reduction and drilling fluids. Typically, these systems are analyzed using bulk rheological measurements to determine their flow properties and cryo-microscopy to detect their nanostructure. Small-angle neutron scattering provides an opportunity to directly and nonperturbatively analyze nanostructure in situ but is complicated for concentrated systems by correlations from interparticle volume exclusion. Here, we use small-angle and ultra-small-angle neutron scattering to probe directly for the first time the nanostructure of concentrated wormlike micellar fluids composed of the widely used surfactant pair sodium laureth sulfate and cocamidopropyl betaine in aqueous electrolytes. Obtained data are analyzed using different approaches to determine scattering contributions from the wormlike particles themselves and interactions between them. It is found that approximating worms as locally rigid cylinders offers some insight into their aggregation dimensions at short length scales, and both volume exclusion and screened Coulombic interaction potentials describe interactions reasonably well. Using the semi-empirical polymer reference interaction site model (PRISM) gives excellent agreement with observed scattering, and physical insight obtained using this approach is discussed in detail. A drawback of this method is the significant complexity in coding the model in order to fit data, so to facilitate this for future researchers, we provide with this paper a fully operational, open-source code to utilize this model.

4.
Langmuir ; 34(3): 970-977, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29016147

RESUMO

Long-chain amidopropyl betaines are known for their ability to self-assemble into viscoelastic wormlike micellar structures. Here, we explore the effect of tailgroup molecular architecture on this process, comparing five molecules, each with C18 chains but different levels of unsaturation and branching. The surfactants are synthesized from stearic, oleic, linoleic, linolenic, and isostearic acids. The self-assembly of these molecules in aqueous solutions is explored using small- and ultra-small-angle neutron scattering (SANS and USANS). It is seen that optimum wormlike micelle formation is achieved for the oleic-chained surfactant, and the alignment of self-assembled structures is further explored using rheo-SANS. The more highly unsaturated molecules form rodlike micelles, whereas the stearic-tailed molecule shows a pronounced Krafft point and the isostearic-chained surfactant is entirely water-insoluble. These results demonstrate the critical importance of tailgroup geometry on surfactant properties and self-assembly for this industrially important class of surfactants.


Assuntos
Betaína/química , Micelas , Tensoativos/química , Estrutura Molecular , Espalhamento a Baixo Ângulo , Água/química
5.
Phys Chem Chem Phys ; 20(24): 16801-16816, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29888351

RESUMO

A diverse range of molecular surfactants and polymers have been incorporated into aqueous graphene oxide (GO) and reduced graphene oxide (rGO) dispersions in order to understand the complex relationship between surface chemistry, surface forces and interfacial thermodynamics of these materials with typical amphiphiles. Surfactant additives were systematically varied in terms of their charge and hydrophobicity to reveal important structure-function relationships affecting adsorption and interaction with GO and rGO surfaces. Small-angle (and ultra small-angle) neutron scattering was employed to examine and monitor the interactions and self-assembly in each system. Charge was found to be the overriding factor driving adsorption, as cationic surfactants very readily adsorbed to both GO and rGO, whereas anionic surfactants gave little to no evidence of adsorption despite possessing hydrophobic tail-groups. Molecules of neutral charge such as nonionic and zwitterionic surfactants as well as neutral polymers also showed strong affinities for GO and rGO, indicating that dispersion and dipole (induction polarisation) interactions also play a significant role in adsorption with these materials. Modelling the neutron data revealed in many cases a q-2 slope in the low q and ultra low q regions, indicating that scattering was occurring from large, flat surfaces (lamellae or bilayers), suggesting an effective flattening of the sheets in dispersion. The results presented thus help to form a roadmap for the behaviour of GO and rGO with surfactants and polymers, relevant to adsorption, stabilisation, formulation and coating in aqueous environments as adsorbent and functional materials.

6.
Bioinformatics ; 32(4): 616-8, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26504146

RESUMO

MOTIVATION: Small angle X-ray scattering (SAXS) is an established method for studying biological macromolecules in solution, whereby the experimental scattering patterns relate to the quaternary and tertiary structure of the macromolecule. Here we present DARA, a web-server, that queries over 150 000 scattering profiles pre-computed from the high resolution models of macromolecules and biological assemblies in the Protein Data Bank, to rapidly find nearest neighbours of a given experimental or theoretical SAXS pattern. Identification of the best scattering equivalents provides a straightforward and automated way of structural assessment of macromolecules based on a SAXS profile. DARA results are useful e.g. for fold recognition and finding of biologically active oligomers. AVAILABILITY AND IMPLEMENTATION: http://dara.embl-hamburg.de/.


Assuntos
Substâncias Macromoleculares/química , Espalhamento a Baixo Ângulo , Software , Difração de Raios X , Bases de Dados de Proteínas , Internet
7.
Biochem J ; 473(18): 2763-82, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27364155

RESUMO

Ezrin is a member of the ERM (ezrin-radixin-moesin) family of proteins that have been conserved through metazoan evolution. These proteins have dormant and active forms, where the latter links the actin cytoskeleton to membranes. ERM proteins have three domains: an N-terminal FERM [band Four-point-one (4.1) ERM] domain comprising three subdomains (F1, F2, and F3); a helical domain; and a C-terminal actin-binding domain. In the dormant form, FERM and C-terminal domains form a stable complex. We have determined crystal structures of the active FERM domain and the dormant FERM:C-terminal domain complex of human ezrin. We observe a bistable array of phenylalanine residues in the core of subdomain F3 that is mobile in the active form and locked in the dormant form. As subdomain F3 is pivotal in binding membrane proteins and phospholipids, these transitions may facilitate activation and signaling. Full-length ezrin forms stable monomers and dimers. We used small-angle X-ray scattering to determine the solution structures of these species. As expected, the monomer shows a globular domain with a protruding helical coiled coil. The dimer shows an elongated dumbbell structure that is twice as long as the monomer. By aligning ERM sequences spanning metazoan evolution, we show that the central helical region is conserved, preserving the heptad repeat. Using this, we have built a dimer model where each monomer forms half of an elongated antiparallel coiled coil with domain-swapped FERM:C-terminal domain complexes at each end. The model suggests that ERM dimers may bind to actin in a parallel fashion.


Assuntos
Proteínas do Citoesqueleto/química , Dicroísmo Circular , Cristalografia por Raios X , Dimerização , Conformação Proteica
8.
Biochim Biophys Acta ; 1838(2): 643-57, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23732235

RESUMO

The CLIC proteins are a highly conserved family of metazoan proteins with the unusual ability to adopt both soluble and integral membrane forms. The physiological functions of CLIC proteins may include enzymatic activity in the soluble form and anion channel activity in the integral membrane form. CLIC proteins are associated with the ERM proteins: ezrin, radixin and moesin. ERM proteins act as cross-linkers between membranes and the cortical actin cytoskeleton. Both CLIC and ERM proteins are controlled by Rho family small GTPases. CLIC proteins, ERM and Rho GTPases act in a concerted manner to control active membrane processes including the maintenance of microvillar structures, phagocytosis and vesicle trafficking. All of these processes involve the interaction of membranes with the underlying cortical actin cytoskeleton. The relationships between Rho GTPases, CLIC proteins, ERM proteins and the membrane:actin cytoskeleton interface are reviewed. Speculative models are proposed involving the formation of localised multi-protein complexes on the membrane surface that assemble via multiple weak interactions. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Humanos
9.
Sci Rep ; 9(1): 19405, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852917

RESUMO

The last decade has seen a range of studies using non-invasive neutron and X-ray techniques to probe the ultrastructure of a variety of photosynthetic membrane systems. A common denominator in this work is the lack of an explicitly formulated underlying structural model, ultimately leading to ambiguity in the data interpretation. Here we formulate and implement a full mathematical model of the scattering from a stacked double bilayer membrane system taking instrumental resolution and polydispersity into account. We validate our model by direct simulation of scattering patterns from 3D structural models. Most importantly, we demonstrate that the full scattering curves from three structurally typical cyanobacterial thylakoid membrane systems measured in vivo can all be described within this framework. The model provides realistic estimates of key structural parameters in the thylakoid membrane, in particular the overall stacking distance and how this is divided between membranes, lumen and cytoplasmic liquid. Finally, from fitted scattering length densities it becomes clear that the protein content in the inner lumen has to be lower than in the outer cytoplasmic liquid and we extract the first quantitative measure of the luminal protein content in a living cyanobacteria.


Assuntos
Cianobactérias/ultraestrutura , Fotossíntese/genética , Tilacoides/ultraestrutura , Cianobactérias/química , Cianobactérias/genética , Conformação Molecular , Difração de Nêutrons , Nêutrons , Espalhamento a Baixo Ângulo , Tilacoides/química , Tilacoides/genética
10.
J Colloid Interface Sci ; 547: 275-290, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959261

RESUMO

Carbohydrates are appealing non-ionic surfactant head-groups as they are naturally abundant, generally biocompatible and biodegradable, and readily functionalized. Recent work has produced a promising molecular candidate for the formation of viscoelastic worm-like micellar solutions: a tri(ethylene glycol)-linked oleyl-ß-D-glucoside surfactant (GlcC18:1) exhibited near ideal Maxwell behavior at low concentrations (2.9 wt%) without additives at room temperature. Here, fourteen surfactants have been synthesized with structural variations based around GlcC18:1. Each contain an oligo(ethylene glycol) linker of varying length (2, 3, 4, 6 EO units) between a carbohydrate head-group (glucose, galactose, mannose, maltose, lactose, cellobiose) and a cis-unsaturated alkyl tail-group (oleyl, linoleyl, erucyl). The aqueous adsorption kinetics and self-assembly of these surfactants was explored using tensiometry and small-angle neutron scattering (SANS), respectively. With SANS we observed the formation of worm-like micelles for four surfactants, and vesicles for two surfactants which exhibited behavior similar to insoluble lipids. We also observed temperature-induced micellar elongation due to dehydration of the oligo(ethylene glycol) linker, resulting in a further three surfactants forming worm-like micelles at 50 °C. Worm-like micellar fluids were further characterized using rheology to reveal two surfactants with vastly superior viscoelastic properties compared to GlcC18:1, with >2 orders of magnitude increase in viscosity and >3 orders of magnitude increase in stress relaxation time. These results provide insight into structure-function relationships for non-ionic surfactants and demonstrate a class of designed amphiphiles with a special propensity for forming viscoelastic worm-like micellar solutions at low concentrations.

11.
J Colloid Interface Sci ; 534: 518-532, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30253353

RESUMO

A model zwitterionic surfactant, oleyl amidopropyl betaine (OAPB), that spontaneously forms viscoelastic wormlike micelles in aqueous solution is mixed with a variety of structurally diverse organic additives. By systematically varying the nature of these additives, insight into the effects of their aromaticity and polarity on the bulk assembly and fluid behaviour of these micelles is gained by the complementary use of small-angle neutron scattering and viscosity measurements. Inclusion of non-polar additives causes the wormlike aggregates to transition into microemulsions above a critical additive concentration; the precise partitioning within the micelle is determined using contrast variation. Alternatively, polar additives do not appear to cause evolution from the wormlike structure, but instead influence the fluid rheology, with some serving to significantly increase viscosity above that of the pure surfactant solution. Addition of these molecules is accompanied by an increase in fluid viscosity when the oxygenated group of the additive is resonance stabilised or acidic. This effect is thought to be a result of surfactant-additive synergism, in which charge screening of the surfactant head-groups causes stronger attractions between molecules, increasing the scission energy of the micelles (i.e. reducing their ability to break apart and reform). Further doping of acidic additives past a critical concentration causes phase separation of the wormlike mixtures. According to ultra-small-angle neutron scattering measurements, the incorporation of all additives (polar or non-polar, aromatic or non-aromatic) results in the formation of 'branched' wormlike networks. These findings emphasise the significant impact of impurities or additives on the properties of aqueous wormlike micellar systems formed by zwitterionic surfactants, and could also inform selection of solutes for controlling fluid rheology.

12.
J Colloid Interface Sci ; 529: 464-475, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945017

RESUMO

Carbohydrates are appealing non-ionic surfactant head-groups as they are naturally abundant, generally biocompatible and biodegradable, and readily functionalized. Here, seven novel carbohydrate based surfactants (CBS) have been synthesized that contain a tri-ethylene glycol (TEG) linker between a glucose head-group and alkyl tail-group, with linear saturated (C8-18) and unsaturated (C18:1) alkyl chains. The aqueous adsorption and self-assembly of these surfactants was explored using tensiometry and small- and ultra-small-angle neutron scattering (SANS and USANS). With SANS we observed elongation from spherical to cylindrical micelles with increasing alkyl chain length. C16 and C18 chains exhibited pronounced Krafft points, yet formed worm-like micelles as single components upon heating to 43 and 48 °C respectively. The introduction of mono-unsaturation in the form of a C18:1 chain reduced the Krafft point and gave a surfactant that produced worm-like micelles in water without additives at room temperature. We also observed micellar elongation for C12 and C14 chains at 50 °C due to dehydration of the TEG linker. The room temperature worm-like micelles were further characterized using rheo-SANS and rheology, revealing the C18:1 surfactant to exhibit near ideal Maxwell behavior at low concentrations (2.9 wt.%). These results provide insight into structure-function relationships for CBS, and demonstrate a promising molecular candidate for the formation of viscoelastic worm-like micellar solutions.


Assuntos
Etilenoglicol/química , Glucosídeos/química , Micelas , Tensoativos/química , Difração de Nêutrons , Reologia , Espalhamento a Baixo Ângulo , Substâncias Viscoelásticas/química , Viscosidade
14.
Proc Natl Acad Sci U S A ; 103(44): 16206-11, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17050693

RESUMO

Intermediate filaments (IFs), along with microtubules, microfilaments, and associated cross-bridging proteins, constitute the cytoskeleton of metazoan cells. While crystallographic data on the dimer representing the elementary IF "building block" have recently become available, little structural detail is known about both the mature IF architecture and its assembly pathway. Here, we have applied solution small-angle x-ray scattering to investigate the in vitro assembly of a 53-kDa human IF protein vimentin at pH 8.4 by systematically varying the ionic strength conditions, and complemented these experiments by electron microscopy and analytical ultracentrifugation. While a vimentin solution in 5 mM Tris.HCl (pH 8.4) contains predominantly tetramers, addition of 20 mM NaCl induces further lateral assembly evidenced by the shift of the sedimentation coefficient and yields a distinct octameric intermediate. Four octamers eventually associate into unit-length filaments (ULFs) that anneal longitudinally. Based on the small-angle x-ray scattering experiments supplemented by crystallographic data and additional structural constraints, 3D molecular models of the vimentin tetramer, octamer, and ULF were constructed. Within each of the three oligomers, the adjacent dimers are aligned exclusively in an approximately half-staggered antiparallel A(11) mode with a distance of 3.2-3.4 nm between their axes. The ULF appears to be a dynamic and a relatively loosely packed structure with a roughly even mass distribution over its cross-section.


Assuntos
Vimentina/química , Vimentina/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Conformação Proteica , Ultracentrifugação , Vimentina/genética , Vimentina/ultraestrutura , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA