Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Anal Chem ; : 1-19, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35857650

RESUMO

The development of portable and efficient nanoprobes to realize the quantitative/qualitative onsite determination of food pollutants is of immense importance for safeguarding human health and food safety. With the advent of the smartphone, the digital imaging property causes it to be an ideal diagnostic substrate to point-of-care analysis probes. Besides, merging the versatility of carbon dots nanostructures and bioreceptor abilities has opened an innovative assortment of construction blocks to design advanced nanoprobes or improving those existing ones. On this ground, massive endeavors have been made to combine mobile phones with smart nanomaterials to produce portable (bio)sensors in a reliable, low cost, rapid, and even facile-to-implement area with inadequate resources. Herein, this work outlines the latest advancement of carbon dots nanostructures on smartphone for onsite detecting of agri-food pollutants. Particularly, we afford a summary of numerous approaches applied for target molecule diagnosis (pesticides, mycotoxins, pathogens, antibiotics, and metal ions), for instance microscopic imaging, fluorescence, colorimetric, and electrochemical techniques. Authors tried to list those scaffolds that are well-recognized in complex media or those using novel constructions/techniques. Lastly, we also point out some challenges and appealing prospects related to the enhancement of high-efficiency smartphone based carbon dots systems.

2.
Crit Rev Anal Chem ; : 1-17, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36580293

RESUMO

Food safety issue is becoming an international challenge for human health owing to the presence of contaminants. In this context, reliable, rapid, and sensitive detecting technology is extremely demanded to establish food safety assurance systems. MOFs (Metal-organic frameworks) are a new type of porous crystalline material with particular physical and chemical characteristics presented in food safety requirements. (Bio)sensors driven MOF materials have emerged as a promising alternative and complementary analytical techniques, owing to their great specific area, high porosity, and uniform and fine-tunable pore buildings. Nevertheless, the insufficient stability and electrical conductivity of classical MOFs limit their utilization. Employing graphene-derived nanomaterials with high functional elements as patterns for the MOF materials not only improves the structural instability and poor conductivity but also impedes the restacking and aggregation between graphene layers, thus significantly extending the MOFs application. A review of MOFs-graphene-based material used in food contamination detection is urgently needed for encouraging the advance of this field. Herein, this paper systematically outlines current breakthroughs in MOF-graphene-based nanoprobes, outlines their principles, and illustrates their employments in identifying mycotoxins, heavy metal ions, pathogens, antibiotics, and pesticides, referring to their multiplexing and sensitivity ability. The challenges and limitations of applying MOF-graphene composite for precise and efficient assessment of food were also debated. This paper would maybe offer some inspired concepts for an upcoming study on MOF-based composites in the food security context.

3.
Front Chem ; 10: 956104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300018

RESUMO

In this work, for the first time, novel Sc-MOF@SiO2 core/shell nanostructures have been synthesized under the optimal conditions of ultrasonic-assisted microwave routes. The final products showed small particle size distributions with homogeneous morphology (SEM results), high thermal stability (TG curve), high surface area (BET adsorption/desorption techniques), and significant porosity (BJH method). The final nanostructures of Sc-MOF@SiO2 core/shell with such distinct properties were used as a new compound for H2S adsorption. It was used with the systematic investigation based on a 2K-1 factorial design, which showed high-performance adsorption of about 5 mmol/g for these novel adsorbents; the optimal experimental conditions included pressure, 1.5 bar; contact time, 20 min; and temperature, 20°C. This study and its results promise a green future for the potential control of gas pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA