Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Small ; 20(30): e2310163, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38389176

RESUMO

The oxygen reduction reaction (ORR) catalyzed by transition-metal single-atom catalysts (SACs) is promising for practical applications in energy-conversion devices, but great challenges still remain due to the sluggish kinetics of O═O cleavage. Herein, a kind of high-density iron network-like sites catalysts are constructed with optimized intermetallic distances on an amino-functionalized carbon matrix (Fe-HDNSs). Quasi-in situ soft X-ray absorption spectroscopy and in situ synchrotron infrared characterizations demonstrate that the optimized intermetallic distances in Fe-HDNSs can in situ activate the molecular oxygen by fast electron compensation through the hybridized Fe 3d‒O 2p, which efficiently facilitates the cleavage of the O═O bond to *O species and highly suppresses the side reactions for an accelerated kinetics of the 4e- ORR. As a result, the well-designed Fe-HDNSs catalysts exhibit superior performances with a half-wave potential of 0.89 V versus reversible hydrogen electrode (RHE) and a kinetic current density of 72 mA cm-2@0.80 V versus RHE, exceeding most of the noble-metal-free ORR catalysts. This work offers some new insights into the understanding of 4e- ORR kinetics and reaction pathways to boost electrochemical performances of SACs.

2.
Inorg Chem ; 61(37): 14705-14717, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36047922

RESUMO

We report herein a Pt(IV) prodrug with metronidazole in axial positions Pt-Mnz. The nitroaromatic axial ligand was conjugated with a cisplatin scaffold to irreversibly reduce under hypoxic conditions, thereby retaining the Pt(IV) prodrug in the area of hypoxia. X-ray near-edge adsorption spectroscopy (XANES) on dried drug-preincubated tumor cell samples revealed a gradual release of cisplatin from the Pt-Mnz prodrug instead of rapid intracellular degradation. The ability of the prodrug to penetrate into three-dimensional (3D) spheroid cellular cultures was evaluated by a novel electrochemical assay via a platinum-coated carbon nanoelectrode, capable of single-cell measurements. Using a unique technique of electrochemical measurements in single tumor spheroids, we were able to both detect the real-time response of the axial ligand to hypoxia and establish the depth of penetration of the drug into the tumor model.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Carbono , Linhagem Celular Tumoral , Cisplatino/química , Humanos , Hipóxia , Ligantes , Metronidazol/farmacologia , Platina/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia
3.
Small ; 17(49): e2105231, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34713574

RESUMO

Accurately manipulating the electronic structure of metal active sites under working conditions is central to developing efficient and stable electrocatalysts in industrial water-alkali electrolyzers. However, the lack of an intuitive means to capture the evolution of metal sites during the reaction state inhibits the manipulation of its electronic structure. Here, atomically dispersed Ru single-sites on cobalt nanoparticles confined onto macro-microporous frameworks (M-Co NPs@Ru SAs/NC) with tunable electron coupling effect for efficient catalysis of alkaline hydrogen evolution reaction (HER) are constructed. Using operando X-ray absorption and infrared spectroscopies, a dynamic CoRu bond shrinkage with strong electron coupling effect under working conditions is identified, which significantly promotes the adsorption of water molecules and then accelerates its dissociation to form the key H* over Ru sites for high HER activity. The well-designed M-Co NPs@Ru SAs/NC delivers efficient HER performance with a small overpotential of 34 mV at 10 mA cm-2 and a high turnover frequency of ≈4284 H2  h-1 at -0.05 V, 40 times higher than that of the benchmark Pt/C. This work provides a new point of view to manipulate the electronic structure of the metal active sites for highly effective electrocatalysis processes.

4.
Inorg Chem ; 60(8): 5694-5703, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33830750

RESUMO

Two metal-organic frameworks (MOFs), UiO-66 and UiO-66-NH2, were considered as containers for bioactive chemicals. We provide a synthesis technique, which allowed the production of these materials suitable for biomedical applications. Both MOFs were characterized as single-phase porous materials composed of nanoparticles (30-65 nm) with a ζ-potential of more than 40 mV in water suspension. D,L-Leucine was applied as a model molecule, which allowed us to trace the mechanism of the loading process. We showed that after synthesis, amino groups of UiO-66-NH2 are coordinated with solvent residuals. It results in a similar route of leucine loading in UiO-66 and UiO-66-NH2 samples. Using joint data of thermogravimetric analysis and calorimetry, infrared spectroscopy, and nitrogen adsorption, we revealed that methyl groups of leucine molecules are responsible for bonding of an MOF matrix. We proposed the formation of bonds between CH3 groups and benzene rings of linkers via CH-π interaction. We also assessed the toxicity of the synthesized MOFs toward HeLa cells at 50 µg/mL after 24 h incubation and revealed no negative effects on the viability of the cells, prompting further biomedical research in the areas of small-molecule delivery and cell signaling and metabolism modulation.


Assuntos
Leucina/química , Estruturas Metalorgânicas/química , Compostos Organometálicos/química , Ácidos Ftálicos/química , Estruturas Metalorgânicas/síntese química , Modelos Moleculares , Nanopartículas/química , Tamanho da Partícula , Porosidade
5.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371302

RESUMO

Synthesis of the MIL-100 metal-organic framework particles was carried out by hydrothermal (HT) and microwave (MW)-assisted methods. Transmission electron microscopy showed formation of microparticles in the course of hydrothermal synthesis and nanoparticles for microwave-assisted synthesis. Powder X-ray diffraction confirmed formation of larger crystallites for hydrothermal synthesis. Particle aggregation in aqueous solution was observed by dynamic light scattering. However, the stability of both samples could be improved in acetic acid solution. Nitrogen sorption isotherms showed high porosity of the particles. ᶫ-leucine molecule was used as a model molecule for loading in the porous micro- and nanoparticles. Loading was estimated by FTIR spectroscopy and thermogravimetric analysis. UV-VIS spectroscopy quantified ᶫ-leucine release from the particles in aqueous solution. Cytotoxicity studies using the HeLa cell model showed that the original particles were somewhat toxic, but ᶫ-leucine loading ameliorated the toxic effects, likely due to signaling properties of the amino acid.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Leucina/química , Dietilamida do Ácido Lisérgico/análogos & derivados , Estruturas Metalorgânicas/química , Nanopartículas/administração & dosagem , Proliferação de Células , Células HeLa , Humanos , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/farmacologia , Nanopartículas/química
6.
Langmuir ; 34(15): 4640-4650, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29566327

RESUMO

Herein, we report a novel one-step solvothermal synthesis of magnetite nanoclusters (MNCs). In this report, we discuss the synthesis, structure, and properties of MNCs and contrast enhancement in T2-weighted MR images using magnetite nanoclusters. The effect of different organic acids, used as surfactants, on the size and shape of MNCs was investigated. The structure and properties of samples were determined by magnetic measurements, TGA, TEM, HRTEM, XRD, FTIR, and MRI. Magnetic measurements show that obtained MNCs have relatively high saturation magnetization values (65.1-81.5 emu/g) and dependence of the coercive force on the average size of MNCs was established. MNCs were transferred into an aqueous medium by Pluronic F-127, and T2-relaxivity values were determined. T2-Weighted MR phantom images clearly demonstrated that such magnetite nanoclusters can be used as contrast agents for MRI.

7.
Faraday Discuss ; 208(0): 287-306, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29796547

RESUMO

Functionalization of metal-organic frameworks with metal nanoparticles (NPs) is a promising way for producing advanced materials for catalytic applications. We present the synthesis and in situ characterization of palladium NPs encapsulated inside a functionalized UiO-67 metal-organic framework. The initial structure was synthesized with 10% of PdCl2bpydc moieties with grafted Pd ions replacing standard 4,4'-biphenyldicarboxylate linkers. This material exhibits the same high crystallinity and thermal stability of standard UiO-67. Formation of palladium NPs was initiated by sample activation in hydrogen and monitored by in situ X-ray powder diffraction and X-ray absorption spectroscopy (XAS). The reduction of PdII ions to Pd0 occurs above 200 °C in 6% H2/He flow. The formed palladium NPs have an average size of 2.1 nm as limited by the cavities of UiO-67 structure. The resulting material showed high activity towards ethylene hydrogenation. Under reaction conditions, palladium was found to form a carbide structure indicated by operando XAS, while formation of ethane was monitored by mass spectroscopy and infra-red spectroscopy.

8.
Polymers (Basel) ; 16(20)2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39458778

RESUMO

Eugenol-containing oligoorganosilsesquioxanes were synthesized by the method of hydrolytic polycondensation in an active medium under various reaction conditions. The obtained products were characterized by 29Si NMR spectroscopy and MALDI-TOF spectrometry. It was shown that factors such as the reaction temperature, polycondensation duration, and molar ratio between the initial alkoxysilane monomer and acetic acid may affect the molecular weight characteristics and molecular structure of the formed oligomer, like the content of stressed cyclic units (T3, DTT, TDT) and unstressed silsesquioxane units TnDm. In particular, an increase in the ratio of the initial reagents led to an increase in the content of silsesquioxane Tn fragments from 28.2%mol to 41.7%mol, while the number of strained cyclic structures decreased by more than two times. An increase in the synthesis time is of no particular practical value since it was found that the composition of the oligomers synthesized for 6 h and 12 h was practically identical, as was that of the oligomers synthesized for 24 h and 48 h. A noticeable transition in the oligomer composition was observed only when the synthesis time was changed from 12 h to 24 h. Finally, it was shown that the choice of synthesis temperature had the strongest effect on the oligomer composition. The oligomer synthesized at 95 °C contained the highest amount of silsesquioxane Tn fragments, >77%mol, while a Tn fragment content of ~42%mol was observed during the synthesis at 117 °C. It was shown that silsesquioxanes are devitrified at room temperature (Tg from -6.4 to -10.6 °C), and their thermal stability in an inert atmosphere is 300 °C. The synthesized oligomers, due to the presence of hydroxyl-containing eugenol units, may be promising binders and additives for functional epoxy-silicone paints and coating materials.

9.
Polymers (Basel) ; 16(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38891517

RESUMO

Preparation of hydrophobic coatings is still a challenge for researchers in various fields of science. One of the easiest ways consists of the use of special modifiers. However, usually such modifiers are poorly compatible with organic polymeric matrixes, which leads to segregation of modifiers and deterioration of coating properties. In this work, we have synthesized a number of organosilicon copolymers and studied their compatibility with epoxy matrix and hydrophobic efficiency. It was shown that the increase of phenyl-containing units leads to increase of compatibility but decreases hydrophobic efficiency. Addition of small amounts of such modifiers into commercial epoxy paint material can lead to an increase of contact angle of the final coating from 63 to 87° without deterioration of other physico-mechanical properties. These results open new perspectives in preparation of organosilicon hydrophobic modifiers with directed properties for fields of application such as paints and coating materials.

10.
Nat Commun ; 15(1): 6650, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103370

RESUMO

The oxygen reduction reaction (ORR) catalyzed by efficient and economical catalysts is critical for sustainable energy devices. Although the newly-emerging atomically dispersed platinum catalysts are highly attractive for maximizing atomic utilization, their catalytic selectivity and durability are severely limited by the inflexible valence transformation between Pt and supports. Here, we present a structure by anchoring Pt atoms onto valence-adjustable CuOx/Cu hybrid nanoparticle supports (Pt1-CuOx/Cu), in which the high-valence Cu (+2) in CuOx combined with zero-valent Cu (0) serves as a wide-range valence electron reservoir (0‒2e) to dynamically adjust the Pt 5d valence states during the ORR. In situ spectroscopic characterizations demonstrate that the dynamic evolution of the Pt 5d valence electron configurations could optimize the adsorption strength of *OOH intermediate and further accelerate the dissociation of O = O bonds for the four-electron ORR. As a result, the Pt1-CuOx/Cu catalysts deliver superior ORR performance with a significantly enhanced four-electron selectivity of over 97% and long-term durability.

11.
Phys Chem Chem Phys ; 15(21): 8046-9, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23628969

RESUMO

Oxygen K-edge X-ray absorption, emission, and resonant inelastic X-ray scattering spectra were measured to site selectively gain insights into the electronic structure of aqueous zinc acetate solution. The character of the acetate ion and the influence of zinc and water on its local electronic structure are discussed.


Assuntos
Espectrometria por Raios X/instrumentação , Espectroscopia por Absorção de Raios X/instrumentação , Acetato de Zinco/química , Elétrons , Desenho de Equipamento , Modelos Moleculares , Oxigênio/química , Água/química , Difração de Raios X
12.
Polymers (Basel) ; 15(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904533

RESUMO

The bulk ring-opening polymerization (ROP) of ε-caprolactone using phosphazene-containing porous polymeric material (HPCP) has been studied at high reaction temperatures (130-150 °C). HPCP in conjunction with benzyl alcohol as an initiator induced the living ROP of ε-caprolactone, affording polyesters with a controlled molecular weight up to 6000 g mol-1 and moderate polydispersity (Ð~1.5) under optimized conditions ([BnOH]/[CL] = 50; HPCP: 0.63 mM; 150 °C). Poly(ε-caprolactone)s with higher molecular weight (up to Mn = 14,000 g mol-1, Ð~1.9) were obtained at a lower temperature, at 130 °C. Due to its high thermal and chemical stability, HPCP can be reused for at least three consecutive cycles without a significant decrease in the catalyst efficiency. The tentative mechanism of the HPCP-catalyzed ROP of ε-caprolactone, the key stage of which consists of the activation of the initiator through the basic sites of the catalyst, was proposed.

13.
Micromachines (Basel) ; 15(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276844

RESUMO

The development of advanced methods for the synthesis of nano- and microparticles in the field of biomedicine is of high interest due to a range of reasons. The current synthesis methods may have limitations in terms of efficiency, scalability, and uniformity of the particles. Here, we investigate the synthesis of submicron calcium carbonate using a microfluidic chip with a T-shaped oil supply for droplet-based synthesis to facilitate control over the formation of submicron calcium carbonate particles. The design of the chip allowed for the precise manipulation of reaction parameters, resulting in improved porosity while maintaining an efficient synthesis rate. The pore size distribution within calcium carbonate particles was estimated via small-angle X-ray scattering. This study showed that the high porosity and reduced size of the particles facilitated the higher loading of a model peptide: 16 vs. 9 mass.% for the particles synthesized in a microfluidic device and in bulk, correspondingly. The biosafety of the developed particles in the concentration range of 0.08-0.8 mg per plate was established by the results of the cytotoxicity study using mouse fibroblasts. This innovative approach of microfluidically assisted synthesis provides a promising avenue for future research in the field of particle synthesis and drug delivery systems.

14.
J Am Chem Soc ; 134(3): 1600-5, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22175947

RESUMO

The nonradiative dark channels in the L-edge fluorescence spectra from transition-metal aqueous solution identify the ultrafast charge-transfer processes playing an important role in many biological and chemical systems. Yet, the exact origin of such spectral dips with respect to the X-ray transmission spectrum has remained unclear. In the present study we explore the nature of the underlying decay mechanism of 2p core-excited Co(2+) in water by probing the nonradiative Auger-type electron emission channel using photoelectron spectroscopy from a liquid microjet. Our measurements demonstrate unequivocally that metal-to-water charge transfer quenches fluorescence and will inevitably lead to a dip in the total-fluorescence-yield X-ray absorption spectrum. This is directly revealed from the resonant enhancement of valence signal intensity arising from the interference of two identical final states created by a direct and Auger-electron emission, respectively.

15.
Nanomaterials (Basel) ; 12(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269331

RESUMO

The attempts to develop efficient methods of solar energy conversion into chemical fuel are ongoing amid climate changes associated with global warming. Photo-electrocatalytic (PEC) water splitting and CO2 reduction reactions show high potential to tackle this challenge. However, the development of economically feasible solutions of PEC solar energy conversion requires novel efficient and stable earth-abundant nanostructured materials. The latter are hardly available without detailed understanding of the local atomic and electronic structure dynamics and mechanisms of the processes occurring during chemical reactions on the catalyst-electrolyte interface. This review considers recent efforts to study photo-electrocatalytic reactions using in situ and operando synchrotron spectroscopies. Particular attention is paid to the operando reaction mechanisms, which were established using X-ray Absorption (XAS) and X-ray Photoelectron (XPS) Spectroscopies. Operando cells that are needed to perform such experiments on synchrotron are covered. Classical and modern theoretical approaches to extract structural information from X-ray Absorption Near-Edge Structure (XANES) spectra are discussed.

16.
Pharmaceutics ; 14(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35890221

RESUMO

Beneficial features of biocompatible high-capacity UiO-66 nanoparticles, mesoporous SiO2, and folate-conjugated pluronic F127 were combined to prepare the core-shell UiO-66@SiO2/F127-FA drug delivery carrier for targeted cellular uptake in cancer treatment. UiO-66 and UiO-66-NH2 nanoparticles with a narrow size and shape distribution were used to form a series of core-shell MOF@SiO2 structures. The duration of silanization was varied to change the thickness of the SiO2 shell, revealing a nonlinear dependence that was attributed to silicon penetration into the porous MOF structure. Doxorubicin encapsulation showed a similar final loading of 5.6 wt % for both uncoated and silica-coated particles, demonstrating the potential of the nanocomposite's application in small molecule delivery. Silica coating improved the colloidal stability of the composites in a number of model physiological media, enabled grafting of target molecules to the surface, and prevented an uncontrolled release of their cargo, with the drawback of decreased overall porosity. Further modification of the particles with the conjugate of pluronic and folic acid was performed to improve the biocompatibility, prolong the blood circulation time, and target the encapsulated drug to the folate-expressing cancer cells. The final DOX-loaded UiO-66@SiO2/F127-FA nanoparticles were subjected to properties characterization and in vitro evaluation, including studies of internalization into cells and antitumor activity. Two cell lines were used: MCF-7 breast cancer cells, which have overexpressed folate receptors on the cell membranes, and RAW 264.7 macrophages without folate overexpression. These findings will provide a potential delivery system for DOX and increase the practical value of MOFs.

17.
Nanomaterials (Basel) ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208886

RESUMO

The aim of the present work was to investigate the toxic effects of zinc oxide nanoparticles (ZnO NPs, particle size < 50 nm) on the physiological and anatomical indices of spring barley (Hordeum sativum L.). The results show that ZnO NPs inhibited H. sativum growth by affecting the chlorophyll fluorescence emissions and causing deformations of the stomatal and trichome morphology, alterations to the cellular organizations, including irregularities of the chloroplasts, and disruptions to the grana and thylakoid organizations. There was a lower number of chloroplasts per cell observed in the H. sativum leaf cells treated with ZnO NPs as compared to the non-treated plants. Cytomorphometric quantification revealed that ZnO NPs decreased the size of the chloroplast by 1.5 and 4 times in 300 and 2000 mg/L ZnO NP-treated plants, respectively. The elemental analysis showed higher Zn accumulation in the treated leaf tissues (3.8 and 10.18-fold with 300 and 2000 mg/L ZnO NPs, respectively) than the untreated. High contents of Zn were observed in several spots in ZnO NP-treated leaf tissues using X-ray fluorescence. Deviations in the anatomical indices were significantly correlated with physiological observations. The accumulation of Zn content in plant tissues that originated from ZnO NPs was shown to cause damage to the structural organization of the photosynthetic apparatus and reduced the photosynthetic activities.

18.
Nanomaterials (Basel) ; 11(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801472

RESUMO

Innovations often play an essential role in the acceleration of the new functional materials discovery. The success and applicability of the synthesis results with new chemical compounds and materials largely depend on the previous experience of the researcher himself and the modernity of the equipment used in the laboratory. Artificial intelligence (AI) technologies are the next step in developing the solution for practical problems in science, including the development of new materials. Those technologies go broadly beyond the borders of a computer science branch and give new insights and practical possibilities within the far areas of expertise and chemistry applications. One of the attractive challenges is an automated new functional material synthesis driven by AI. However, while having many years of hands-on experience, chemistry specialists have a vague picture of AI. To strengthen and underline AI's role in materials discovery, a short introduction is given to the essential technologies, and the machine learning process is explained. After this review, this review summarizes the recent studies of new strategies that help automate and accelerate the development of new functional materials. Moreover, automatized laboratories' self-driving cycle could benefit from using AI algorithms to optimize new functional nanomaterials' synthetic routes. Despite the fact that such technologies will shape material science in the nearest future, we note the intelligent use of algorithms and automation is required for novel discoveries.

19.
Nanomaterials (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629755

RESUMO

: We report here a simple two-stage synthesis of zinc-cobalt oxide nanoparticles. We used Zn/Co-zeolite imidazolate framework (ZIF)-8 materials as precursors for annealing and optional impregnation with a silicon source for the formation of a protective layer on the surface of oxide nanoparticles. Using bimetallic ZIFs allowed us to trace the phase transition of the obtained oxide nanoparticles from wurtzite ZnO to spinel Co3O4 structures. Using (X-Ray diffraction) XRD and (X-ray Absorption Near Edge Structure) XANES techniques, we confirmed the incorporation of cobalt ions into the ZnO structure up to 5 mol.% of Co. Simple annealing of Zn/Co-ZIF-8 materials in the air led to the formation of oxide nanoparticles of about 20-30 nm, while additional treatment of ZIFs with silicon source resulted in nanoparticles of about 5-10 nm covered with protective silica layer. We revealed the incorporation of oxygen vacancies in the obtained ZnO nanoparticles using FTIR analysis. All obtained samples were comprehensively characterized, including analysis with a synchrotron radiation source.

20.
J Med Chem ; 63(21): 13031-13063, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32985193

RESUMO

A series of 73 ligands and 73 of their Cu+2 and Cu+1 copper complexes with different geometries, oxidation states of the metal, and redox activities were synthesized and characterized. The aim of the study was to establish the structure-activity relationship within a series of analogues with different substituents at the N(3) position, which govern the redox potentials of the Cu+2/Cu+1 redox couples, ROS generation ability, and intracellular accumulation. Possible cytotoxicity mechanisms, such as DNA damage, DNA intercalation, telomerase inhibition, and apoptosis induction, have been investigated. ROS formation in MCF-7 cells and three-dimensional (3D) spheroids was proven using the Pt-nanoelectrode. Drug accumulation and ROS formation at 40-60 µm spheroid depths were found to be the key factors for the drug efficacy in the 3D tumor model, governed by the Cu+2/Cu+1 redox potential. A nontoxic in vivo single-dose evaluation for two binuclear mixed-valence Cu+1/Cu+2 redox-active coordination compounds, 72k and 61k, was conducted.


Assuntos
Complexos de Coordenação/química , Cobre/química , Imidazóis/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Dano ao DNA/efeitos dos fármacos , Humanos , Ligantes , Células MCF-7 , Modelos Biológicos , Conformação Molecular , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Esferoides Celulares/efeitos dos fármacos , Relação Estrutura-Atividade , Telomerase/antagonistas & inibidores , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA