Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37447920

RESUMO

The tomographic imaging method is promising in large-area touch-sensing applications. This paper presents a new type of such touch sensor using ultrasonic tomography (UST) via sound attenuation imaging. UST is gaining popularity as a portable, fast, and inexpensive imaging system for medical and industrial applications. UST can be developed in different operation modes. A transmission mode UST is being investigated as a force- and touch-sensitive skin. A prototype skin sensor was developed in a 200 mm diameter circular UST array containing two sets of 16 transducers, with one operating at a central frequency of 40 kHz and the other at 300 kHz. The extension of the sensor in terms of dimension, up to 400 mm diameter, and number of sensors, up to 32 transducers, is possible where eight points of contact were reconstructed successfully. The medium contains a 20 mm high water region, and a soft silicone membrane covers the liquid region. When touchpoints or forces are applied to the soft skin of the membrane, the sound pathway is disrupted, resulting in an image of the touch position and touch force intensity using a tomographic UST algorithm. Several static and dynamic experiments are conducted to demonstrate this novel application of UST. In addition, a correlation analysis is carried out to establish the force quantification potential for the UST-based tactile skin.


Assuntos
Percepção do Tato , Tato , Fenômenos Mecânicos , Ultrassonografia , Tomografia Computadorizada por Raios X
2.
Sensors (Basel) ; 23(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139630

RESUMO

Measurement is the front-end basis of information acquisition [...].

3.
Sensors (Basel) ; 23(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36772593

RESUMO

The article presents the implementation of artificial intelligence algorithms for the problem of discretization in Electrical Impedance Tomography (EIT) adapted for urinary tract monitoring. The primary objective of discretization is to create a finite element mesh (FEM) classifier that will separate the inclusion elements from the background. In general, the classifier is designed to detect the area of elements belonging to an inclusion revealing the shape of that object. We show the adaptation of supervised learning methods such as logistic regression, decision trees, linear and quadratic discriminant analysis to the problem of tracking the urinary bladder using EIT. Our study focuses on developing and comparing various algorithms for discretization, which perfectly supplement methods for an inverse problem. The innovation of the presented solutions lies in the originally adapted algorithms for EIT allowing for the tracking of the bladder. We claim that a robust measurement solution with sensors and statistical methods can track the placement and shape change of the bladder, leading to effective information about the studied object. This article also shows the developed device, its functions and working principle. The development of such a device and accompanying information technology came about in response to particularly strong market demand for modern technical solutions for urinary tract rehabilitation.


Assuntos
Bexiga Urinária , Dispositivos Eletrônicos Vestíveis , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/fisiologia , Inteligência Artificial , Impedância Elétrica , Análise de Elementos Finitos , Tomografia/métodos , Algoritmos , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador/métodos
4.
Entropy (Basel) ; 25(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36673289

RESUMO

Regularization with priors is an effective approach to solve the ill-posed inverse problem of electrical tomography. Entropy priors have been proven to be promising in radiation tomography but have received less attention in the literature of electrical tomography. This work aims to investigate the image reconstruction of capacitively coupled electrical resistance tomography (CCERT) with entropy priors. Four types of entropy priors are introduced, including the image entropy, the projection entropy, the image-projection joint entropy, and the cross-entropy between the measurement projection and the forward projection. Correspondingly, objective functions with the four entropy priors are developed, where the first three are implemented under the maximum entropy strategy and the last one is implemented under the minimum cross-entropy strategy. Linear back-projection is adopted to obtain the initial image. The steepest descent method is utilized to optimize the objective function and obtain the final image. Experimental results show that the four entropy priors are effective in regularization of the ill-posed inverse problem of CCERT to obtain a reasonable solution. Compared with the initial image obtained by linear back projection, all the four entropy priors make sense in improving the image quality. Results also indicate that cross-entropy has the best performance among the four entropy priors in the image reconstruction of CCERT.

5.
Sensors (Basel) ; 22(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35808533

RESUMO

Electrical impedance tomography (EIT) is a promising technique for large area tactile sensing for robotic skin. This study presents a novel EIT-based force and touch sensor that features a latex membrane acting as soft skin and an ionic liquid domain. The sensor works based on fringing field EIT where the touch or force leads to a deformation in the latex membrane causing detectable changes in EIT data. This article analyses the performance of this electronic skin in terms of its dynamical behaviour, position accuracy and quantitative force sensing. Investigation into the sensor's performance showed it to be hypersensitive, in that it can reliably detect forces as small as 64 mN. Furthermore, multi-touch discrimination and annular force sensing is displayed. The hysteresis in force sensing is investigated showing a very negligible hysteresis. This is a direct result of the latex membrane and the ionic liquid-based domain design compared to more traditional fabric-based touch sensors due to the reduction in electromechanical coupling. A novel test is devised that displayed the dynamic performance of the sensor by showing its ability to record a 1 Hz frequency, which was applied to the membrane in a tapping fashion. Overall, the results show a considerable progress in ionic liquid EIT-based sensors. These findings place the EIT-based sensors that comprise a liquid domain, at the forefront of research into tactile robotic skin.


Assuntos
Líquidos Iônicos , Dispositivos Eletrônicos Vestíveis , Impedância Elétrica , Têxteis , Tomografia/métodos , Tomografia Computadorizada por Raios X/métodos
6.
Sensors (Basel) ; 22(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35336364

RESUMO

More than 96% of steel in the world is produced via the method of continuous casting. The flow condition in the mould, where the initial solidification occurs, has a significant impact on the quality of steel products. It is important to have timely, and perhaps automated, control of the flow during casting. This work presents a new concept of using contactless inductive flow tomography (CIFT) as a sensor for a novel controller, which alters the strength of an electromagnetic brake (EMBr) of ruler type based on the reconstructed flow structure in the mould. The method was developed for the small-scale Liquid Metal Model for Continuous Casting (mini-LIMMCAST) facility available at the Helmholtz-Zentrum Dresden-Rossendorf. As an example of an undesired flow condition, clogging of the submerged entry nozzle (SEN) was modelled by partly closing one of the side ports of the SEN; in combination with an active EMBr, the jet penetrates deeper into the mould than when the EMBr is switched off. Corresponding flow patterns are detected by extracting the impingement position of the jets at the narrow faces of the mould from the CIFT reconstruction. The controller is designed to detect to undesired flow condition and switch off the EMBr. The temporal resolution of CIFT is 0.5 s.

7.
Sensors (Basel) ; 22(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336477

RESUMO

With the ongoing digitalization of industry, imaging sensors are becoming increasingly important for industrial process control. In addition to direct imaging techniques such as those provided by video or infrared cameras, tomographic sensors are of interest in the process industry where harsh process conditions and opaque fluids require non-intrusive and non-optical sensing techniques. Because most tomographic sensors rely on complex and often time-multiplexed excitation and measurement schemes and require computationally intensive image reconstruction, their application in the control of highly dynamic processes is often hindered. This article provides an overview of the current state of the art in fast process tomography and its potential for use in industry.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos
8.
Sensors (Basel) ; 21(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070503

RESUMO

Magnetic induction tomography (MIT) is largely focused on applications in biomedical and industrial process engineering. MIT has a great potential for imaging metallic samples; however, there are fewer developments directed toward the testing and monitoring of metal components. Eddy-current non-destructive testing is well established, showing that corrosion, fatigue and mechanical loading are detectable in metals. Applying the same principles to MIT would provide a useful imaging tool for determining the condition of metal components. A compact MIT instrument is described, including the design aspects and system performance characterisation, assessing dynamic range and signal quality. The image rendering ability is assessed using both external and internal object inclusions. A multi-frequency MIT system has similar capabilities as transient based pulsed eddy current instruments. The forward model for frequency swap multi-frequency is solved, using a computationally efficient numerical modelling with the edge-based finite elements method. The image reconstruction for spectral imaging is done by adaptation of a spectrally correlative base algorithm, providing whole spectrum data for the conductivity or permeability.

9.
Sensors (Basel) ; 21(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467627

RESUMO

In this paper, a computer-aided training method for hyperparameter selection of limited data X-ray computed tomography (XCT) reconstruction was proposed. The proposed method employed the ant colony optimisation (ACO) approach to assist in hyperparameter selection for the adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm, which is a total-variation (TV) based regularisation algorithm. During the implementation, there was a colony of artificial ants that swarm through the AwPCSD algorithm. Each ant chose a set of hyperparameters required for its iterative CT reconstruction and the correlation coefficient (CC) score was given for reconstructed images compared to the reference image. A colony of ants in one generation left a pheromone through its chosen path representing a choice of hyperparameters. Higher score means stronger pheromones/probabilities to attract more ants in the next generations. At the end of the implementation, the hyperparameter configuration with the highest score was chosen as an optimal set of hyperparameters. In the experimental results section, the reconstruction using hyperparameters from the proposed method was compared with results from three other cases: the conjugate gradient least square (CGLS), the AwPCSD algorithm using the set of arbitrary hyperparameters and the cross-validation method.The experiments showed that the results from the proposed method were superior to those of the CGLS algorithm and the AwPCSD algorithm using the set of arbitrary hyperparameters. Although the results of the ACO algorithm were slightly inferior to those of the cross-validation method as measured by the quantitative metrics, the ACO algorithm was over 10 times faster than cross-Validation. The optimal set of hyperparameters from the proposed method was also robust against an increase of noise in the data and can be applicable to different imaging samples with similar context. The ACO approach in the proposed method was able to identify optimal values of hyperparameters for a dataset and, as a result, produced a good quality reconstructed image from limited number of projection data. The proposed method in this work successfully solves a problem of hyperparameters selection, which is a major challenge in an implementation of TV based reconstruction algorithms.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador , Análise dos Mínimos Quadrados , Imagens de Fantasmas
10.
Sensors (Basel) ; 21(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477565

RESUMO

Crystallisation is a crucial step in many industrial processes. Many sensors are being investigated for monitoring such processes to enhance the efficiency of them. Ultrasound techniques have been used for particle sizing characterization of liquid suspensions, in crystallisation process. An ultrasound tomography system with an array of ultrasound sensors can provide spatial information inside the process when compared to single-measurement systems. In this study, the batch crystallisation experiments have been conducted in a lab-scale reactor in calcium carbonate crystallisation. Real-time ultrasound tomographic imaging is done via a contactless ultrasound tomography sensor array. The effect of the injection rate and the stirring speed was considered as two control parameters in these crystallisation functions. Transmission mode ultrasound tomography comprises 32 piezoelectric transducers with central frequency of 40 kHz has been used. The process-based experimental investigation shows the capability of the proposed ultrasound tomography system for crystallisation process monitoring. Information on process dynamics, as well as process malfunction, can be obtained via the ultrasound tomography system.

11.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770301

RESUMO

In this work, an ultrasound computed tomography (USCT) system was employed to investigate the fast-kinetic reactive crystallization process of calcium carbonate. USCT measurements and reconstruction provided key insights into the bulk particle distribution inside the stirred tank reactor and could be used to estimate the settling rate and settling time of the particles. To establish the utility of the USCT system for dynamical crystallization processes, first, the experimental imaging tasks were carried out with the stirred solid beads, as well as the feeding and stirring of the CaCO3 crystals. The feeding region, the mixing process, and the particles settling time could be detected from USCT data. Reactive crystallization experiments for CO2 capture were then conducted. Moreover, there was further potential for quantitative characterization of the suspension density in this process. USCT-based reconstructions were investigated for several experimental scenarios and operating conditions. This study demonstrates a real-time monitoring and fault detection application of USCT for reactive crystallization processes. As a robust noninvasive and nonintrusive tool, real-time signal analysis and reconstruction can be beneficial in the development of monitoring and control systems with real-world applications for crystallization processes. A diverse range of experimental studies shown here demonstrate the versatility of the USCT system in process application, hoping to unlock the commercial and industrial utility of the USCT devices.


Assuntos
Dióxido de Carbono , Tomografia Computadorizada por Raios X , Carbonato de Cálcio , Cristalização , Ultrassonografia
12.
Sensors (Basel) ; 20(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545282

RESUMO

A new bio-imaging method has been developed by introducing an experimental verification of capacitively coupled resistivity imaging in a small scale. This paper focuses on the 2D circular array imaging sensor as well as a 3D planar array imaging sensor with spectroscopic measurements in a wide range from low frequency to radiofrequency. Both these two setups are well suited for standard containers used in cell and culture biological studies, allowing for fully non-invasive testing. This is true as the capacitive based imaging sensor can extract dielectric spectroscopic images from the sample without direct contact with the medium. The paper shows the concept by deriving a wide range of spectroscopic information from biological test samples. We drive both spectra of electrical conductivity and the change rate of electrical conductivity with frequency as a piece of fundamentally important information. The high-frequency excitation allows the interrogation of critical properties that arise from the cell nucleus.


Assuntos
Tomografia Computadorizada por Raios X , Tomografia , Espectroscopia Dielétrica , Condutividade Elétrica
13.
Sensors (Basel) ; 20(7)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235390

RESUMO

Electrical resistance tomography (ERT) has been investigated in monitoring conductive flows due to its high speed, non-intrusive and no radiation hazard advantages. Recently, we have developed an ERT system for the novel application of smart wastewater metering. The dedicated low cost and high-speed design of the reported ERT device allows for imaging pipes with different flow constituents and monitoring the sewer networks. This work extends the capability of such a system to work with partially filled lateral pipes where the incomplete data issue arises due to the electrodes losing contact with the conductive medium. Although the ERT for such a limited region has been developed for many years, there is no study on imaging content within these limited regions. For wastewater monitoring, this means imaging the wastewater and solid inclusions at the same time. This paper has presented a modified ERT system that has the capacity to image inclusions within the conductive region using limited data. We have adjusted the ERT hardware to register the information of the non-contact electrodes and hence the valid measurements. A limited region image reconstruction method based on Jacobian reformulation is applied to gain robustness when it comes to inclusion recovery in limited data ERT. Both simulation and experimental results have demonstrated an enhanced performance brought by the limited region method in comparison to the global reconstruction.

14.
Sensors (Basel) ; 20(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066126

RESUMO

Capacitively coupled electrical impedance tomography (CCEIT) is a new kind of electrical resistance tomography (ERT) which realizes contactless measurement by capacitive coupling and extends traditional resistance measurement to total impedance measurement. This work investigates the performance of a CCEIT sensor with three different configurations, including the unshielded configuration, the shielded configuration A (the CCEIT sensor with the external shield) and the shielded configuration B (the CCEIT sensor with both the external shield and the radial screens). The equivalent circuit models of the measurement electrode pair of the CCEIT sensor with different configurations were developed. Additionally, three CCEIT prototypes corresponding to the three configurations were developed. Both the simulation work and experiments were carried out to compare various aspects of the three CCEIT prototypes, including the sensitivity distribution, the impedance measurement and the practical imaging performance. Simulation results show that shielded configurations improve the overall average sensitivity of the sensitivity distributions. Shielded configuration A contributes to improve the uniformity of the sensitivity distributions, while shielded configuration B reduces the uniformity in most cases. Experimental results show that the shielded configurations have no significant influence on the imaging quality of the real part of impedance measurement, but do make sense in improving the imaging performance of the imaginary part and the amplitude of impedance measurement. However, configuration B (with radial screens) has no significant advantage over configuration A (without radial screens). This work provides an insight into how shielding measures influence the performance of the CCEIT sensor, in addition to playing an important role in shielding unwanted noise and disturbances. The research results can provide a useful reference for further development of CCEIT sensors.

15.
Sensors (Basel) ; 19(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484344

RESUMO

Industrial process tomography (IPT) is a set of multi-dimensional sensor technologies and methods that aim to provide unparalleled internal information on industrial processes used in many sectors [...].

16.
Sensors (Basel) ; 19(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295910

RESUMO

Smart flow monitoring is critical for sewer system management. Obstructions and restrictions to flow in discharge pipes are common and costly. We propose the use of electrical resistance tomography modality for the task of smart wastewater metering. This paper presents the electronics hardware design and bespoke signal processing to create an embedded sensor for measuring flow rates and flow properties, such as constituent materials in sewage or grey water discharge pipes of diameters larger than 250 mm. The dedicated analogue signal conditioning module, zero-cross switching scheme, and real-time operating system enable the system to perform low-cost serial measurements while still providing the capability of real-time capturing. The system performance was evaluated via both stationary and dynamic experiments. A data acquisition speed of 14 frames per second (fps) was achieved with an overall signal to noise ratio of at least 59.54 dB. The smallest sample size reported was 0.04% of the domain size in stationary tests, illustrating good resolution. Movements have been successfully captured in dynamic tests, with a clear definition being achieved of objects in each reconstructed image, as well as a fine overall visualization of movement.

17.
Sensors (Basel) ; 19(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766718

RESUMO

This work presents an ultrasound tomography imaging system and method for quantitative mapping of the sound speed in liquid masses. It is highly desirable to be able to inspect vessel fluid mass distribution, notably in the chemical and food industrial operations. Optimization of industrial reactors has been crucial to the improvement of industrial processes. There is a great need to investigate how and if tomographic imaging sensors could aid the automatic control of these process tanks. Single-measurement ultrasound techniques and especially spectrometric methods have been a subject of study of industrial applications. Tomographic systems provide key multi-dimensional and spatial information when compared to the well-established single-channel measurement system. Recently, ultrasound tomography has attracted a great deal of interest in a wide spectrum of industrial applications. The system has been designed as 32 piezoelectric ring-array positioned in a 30 cm tank, with an excitation frequency of 40 kHz. Two-dimensional transmission travel-time tomography was developed to reconstruct the fluid mass distributions. Prior experiments are mainly based on inclusions of a few centimetres and on a liquid solution of different concentrations. They have been conducted to test the spatial and quantitative resolution of the ultrasound imaging device. Analysing the reconstructed images, it is possible to provide accurate spatial resolution with low position errors. The system also demonstrated inclusion movement with a temporal resolution of 4 frames per second (fps) in dynamical imaging sense. Sound velocity quantitative imaging was developed for the investigation of ultrasonic propagation in different liquids. This work, for the first time, shows how quantitative sound velocity imaging using transmission mode time of flight data could be used to characterize liquid density distribution of industrial reactors. The results suggest that ultrasound tomography can be used to quantitatively monitor important process parameters.

18.
Sensors (Basel) ; 19(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288426

RESUMO

Magnetic Induction Tomography (MIT) is a non-invasive imaging technique that has been widely applied for imaging materials with high electrical conductivity contrasts. Steel production is among an increasing number of applications that require a contactless method for monitoring the casting process due to the high temperature of hot steel. In this paper, an MIT technique is proposed for detecting defects and deformations in the external surfaces of metal, which has the potential to be used to monitor the external surface of hot steel during the continuous casting process. The Total Variation (TV) reconstruction algorithm was developed to image the conductivity distributions. Nonetheless, the reconstructed image of the deformed square metal obtained using the TV algorithm directly does not yield resonable images of the surface deformation. However, differential images obtained by subtracting the image of a perfect square metal with no deformations from the image obtained for a deformed square metal does provide accurate and repeatable deformation information. It is possible to obtain a more precise image of surface deformation by thresholding the differential image. This TV-based threshold-differencing method has been analysed and verified from both simulation and experimental tests. The simulation results reported that 0.92 % of the image region can be detected, and the experimental results indicated a 0.57 % detectability. Use of the proposed method was demonstareted in a MIT device which was used in continuous casting set up. The paper shows results from computer simulation, lab based cold tests, and real life data from continoeus cating demonstating the effectiveness of the proposed method.

19.
Sensors (Basel) ; 18(6)2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29795042

RESUMO

Electrical resistance tomography (ERT) has been considered as a data collection and image reconstruction method in many multi-phase flow application areas due to its advantages of high speed, low cost and being non-invasive. In order to improve the quality of the reconstructed images, the Total Variation algorithm attracts abundant attention due to its ability to solve large piecewise and discontinuous conductivity distributions. In industrial processing tomography (IPT), techniques such as ERT have been used to extract important flow measurement information. For a moving object inside a pipe, a velocity profile can be calculated from the cross correlation between signals generated from ERT sensors. Many previous studies have used two sets of 2D ERT measurements based on pixel-pixel cross correlation, which requires two ERT systems. In this paper, a method for carrying out flow velocity measurement using a single ERT system is proposed. A novel spatiotemporal total variation regularization approach is utilised to exploit sparsity both in space and time in 4D, and a voxel-voxel cross correlation method is adopted for measurement of flow profile. Result shows that the velocity profile can be calculated with a single ERT system and that the volume fraction and movement can be monitored using the proposed method. Both semi-dynamic experimental and static simulation studies verify the suitability of the proposed method. For in plane velocity profile, a 3D image based on temporal 2D images produces velocity profile with accuracy of less than 1% error and a 4D image for 3D velocity profiling shows an error of 4%.

20.
Sensors (Basel) ; 18(11)2018 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-30453638

RESUMO

Electrical resistance tomography (ERT) is an imaging technique to recover the conductivity distribution with boundary measurements via attached electrodes. There are a wide range of applications using ERT for image reconstruction or parameter calculation due to high speed data collection, low cost, and the advantages of being non-invasive and portable. Although ERT is considered a high temporal resolution method, a temporally regularized method can greatly enhance such a temporal resolution compared to frame-by-frame reconstruction. In some of the cases, especially in the industrial applications, dynamic movement of an object is critical. In practice, it is desirable for monitoring and controlling the dynamic process. ERT can determine the spatial conductivity distribution based on previous work, and ERT potentially shows good performance in exploiting temporal information as well. Many ERT algorithms reconstruct images frame by frame, which is not optimal and would assume that the target is static during collection of each data frame, which is inconsistent with the real case. Although spatiotemporal-based algorithms can account for the temporal effect of dynamic movement and can generate better results, there is not that much work aimed at analyzing the performance in the time domain. In this paper, we discuss the performance of a novel spatiotemporal total variation (STTV) algorithm in both the spatial and temporal domain, and Temporal One-Step Tikhonov-based algorithms were also employed for comparison. The experimental results show that the STTV has a faster response time for temporal variation of the moving object. This robust time response can contribute to a much better control process which is the main aim of the new generation of process tomography systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA