Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(46)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37579747

RESUMO

We have studied a 5-terminal system consisting of three single level quantum dots (QDs) that are in contact with their respective reservoirs. In addition to the intra-dot Coulomb interaction, the electron in the dot affected by an inter-dot Coulomb repulsion from its adjacent QD. We describe this system by an Anderson type model Hamiltonian and apply the Greens function method to study the transport properties of the system. Since we are interested in temperatures higher than the Kondo temperature, we use the equations of motion technique to calculate Green's functions. Numerical analysis shows that there is a correlation between the transport characteristics of the lower and upper dot and we can change the conductivity of the lower dot only by varying the parameters of the upper dot and vice versa. We demonstrated that the middle dot play the role of the switch on/off of this correlation. Also, we investigated the effect of thermoelectric properties. We found that the inter-dot Coulomb interaction can improve the thermoelectric performance of the system.

2.
Nanotechnology ; 32(37)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34098541

RESUMO

Armchair phosphorene nanoribbons (APNRs) are known to be semiconductors with an indirect bandgap. Here, we propose to introduce new states in the gap of APNRs by creating a periodic structure of vacancies (antidots). Based on the tight-binding model, we show that a periodic array of vacancies or nanopores leads to the formation of an impurity band inside the gap region. We first present an analytical expression for the dispersion relation of an impurity band induced by hybridization of bound states associated with each single vacancy defect. Then, we increase the size of vacancy defects to include a bunch of atoms and theoretically investigate the effect of nanopores size and their spacing on electronic band structure, carrier transmission function, and thermoelectric properties. Our analysis of the power generation rate and thermoelectric efficiency of these structures reveals that an ANPR can be used as a superb thermoelectric power generation module.

3.
Sci Rep ; 13(1): 12844, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553431

RESUMO

Studying the edge states of a topological system and extracting their topological properties is of great importance in understanding and characterizing these systems. In this paper, we present a novel analytical approach for obtaining explicit expressions for the edge states in the Kane-Mele model within a ribbon geometry featuring armchair boundaries. Our approach involves a mapping procedure that transforms the system into an extended Su-Schrieffer-Heeger model, specifically a two-leg ladder, in momentum space. Through rigorous derivation, we determine various analytical properties of the edge states, including their wave functions and energy dispersion. Additionally, we investigate the condition for topological transition by solely analyzing the edge states, and we elucidate the underlying reasons for the violation of the bulk-edge correspondence in relatively narrow ribbons. Our findings shed light on the unique characteristics of the edge states in the quantum spin Hall phase of the Kane-Mele model and provide valuable insights into the topological properties of such systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA