RESUMO
Since 1990 and the invention of the very first generation of ordered mesoporous silica materials, several innovative methodologies have been applied to synthesize, characterize, and modify silica/non-silica mesoporous materials. The growth of the mesoporous materials field has generated significant environmental and economic advantages compared to various other industrial developments. According to the literature, there are several key synthesis approaches and parameters that can affect the structural, textural and morphological characteristics of mesoporous materials. To date, huge attempts have been made to maximize the activities and selectivities of these materials through either the in situ or post-synthesis functionalization of the large interior surface areas and internal mesostructured frameworks in the presence of specific organic/inorganic components. However, the main challenge is to provide good control over the incorporation and distribution of multiple guest components within the mesostructured hosts. Mesostructured materials have received great attention for various applications, such as being used in electronics, medicine, photocatalysis, catalyst supports, catalysis, absorbers, sensors, gas separation, etc. In the current paper, several recent developments have been highlighted and reviewed regarding the fabrication and characterization of siliceous/non-siliceous mesoporous materials via various synthetic approaches. Furthermore, the availability of diverse functionalization methods has been reviewed to provide comprehensive approaches for synthesizing new generations of suitably modified mesoporous materials with superior structural, physicochemical, and textural characteristics.
RESUMO
[This corrects the article DOI: 10.1039/D0RA00440E.].
RESUMO
In the present research, artificial neural network (ANN) modelling was utilized to determine the relative importance of effective variables to achieve optimum specific surface areas of a synthesized catalyst. Initially, carbonaceous nanocrystalline mesoporous NiO core-shell solid sphere composites were produced by applying incomplete carbonized glucose (ICG) as the pore directing agent and polyethylene glycol (PEG; 4000) as the surfactant via a hydrothermal-assisted method. The Brunauer-Emmett-Teller (BET) model was applied to ascertain the textural characteristics of the as-prepared mesoporous NiO catalyst. The effects of several key parameters such as metal ratio, surfactant and template concentrations, and calcination temperature on the prediction of the surface areas of the as-synthesized catalyst were evaluated. In order to verify the optimum hydrothermal fabrication conditions, ANN was trained over five different algorithms (QP, BBP, IBP, LM, and GA). Among five different algorithms, LM-4-7-1 representing 4 nodes in the input layer, 7 nodes in the hidden layer, and 1 node in the output layer was verified as the optimum model due to its optimum numerical properties. According to the modelling study, the calcination temperature demonstrated the most effective parameter, while the ICG concentration indicated the least effect. By verifying the optimum hydrothermal fabrication conditions, the thermal decomposition of ammonium sulphate (TDAS) was applied to the functionalized surface areas and mesoporous walls by -SO3H functional groups. In addition, the catalytic performance and reusability of the produced mesoporous SO3H-NiO catalyst were evaluated via the transesterification of waste cooking palm oil, resulting in a methyl ester content of 97.4% and excellent stability for nine consecutive transesterification reactions without additional treatments.
RESUMO
The main purpose of this work is to investigate the application options of the char produced from gasification plants. Two promising mesoporous acidic catalysts were synthesized using char as a support material. Two char samples were collected from either a dual-stage or a rising co-current biomass gasification plant. The catalysts produced from both gasification char samples were characterized for their physiochemical and morphological properties using N2 physorption measurement, total acidity evaluation through TPD-NH3, functional groups analysis by FT-IR, and morphology determination via FESEM. Results revealed that the dual-stage char-derived mesoporous catalyst (DSC-SO4) with higher specific surface area and acidic properties provided higher catalytic activity for fatty acid methyl esters (FAME) production from waste cooking oil (WCO) than the mesoporous catalyst obtained from char produced by rising co-current gasification (RCC-SO4). Furthermore, the effects of methanol/oil molar ratio (3:1-15:1), catalyst concentration (1-5 wt.% of oil), and reaction time (30-150 min) were studied while keeping the transesterification temperature constant at 65 °C. The optimal reaction conditions for the transesterification of WCO were 4 wt.% catalyst concentration, 12:1 methanol/oil molar ratio, and 90 min operating time. The optimized reaction conditions resulted in FAME conversions of 97% and 83% over DSC-SO4 and RCC-SO4 catalysts, respectively. The char-based catalysts show excellent reusability, since they could be reused six times without any modification.
RESUMO
In the present study, a sequence of experiments was performed to assess the influence of the key process parameters on the formation of a carbon nanofiber-coated monolith (CNFCM), using a four-level factorial design in response surface methodology (RSM). The effect of reaction temperature, hydrocarbon flow rate, catalyst and catalyst promoter were examined using RSM to enhance the formation yield of CNFs on a monolith substrate. To calculate carbon yield, a quadratic polynomial model was modified through multiple regression analysis and the best possible reaction conditions were found as follows: a reaction temperature of 800 °C, furfuryl alcohol flow of 0.08525 mL/min, ferrocene catalyst concentration of 2.21 g. According to the characterization study, the synthesized CNFs showed a high graphitization which were uniformly distributed on a monolith substrate. Besides this, the feasibility of carbon dioxide (CO2) adsorption from the gaseous mixture (N2/CO2) under a range of experimental conditions was investigated at monolithic column. To get the most out of the CO2 capture, an as-prepared sample was post-modified using ammonia. Furthermore, a deactivation model (DM) was introduced for the purpose of studying the breakthrough curves. The CO2 adsorption onto CNFCM was experimentally examined under following operating conditions: a temperature of 30-50 °C, pressure of 1-2 bar, flow rate of 50-90 mL/min, and CO2 feed amount of 10-40 vol.%. A lower adsorption capacity and shorter breakthrough time were detected by escalating the temperature. On the other hand, the capacity for CO2 adsorption increased by raising the CO2 feed amount, feed flow rate, and operating pressure. The comparative evaluation of CO2 uptake over unmodified and modified CNFCM adsorbents confirmed that the introduced modification procedure caused a substantial improvement in CO2 adsorption.
RESUMO
In the present research, a mesoporous NiO core-shell solid sphere was hydrothermally synthesized, using polyethylene glycol (PEG; 4000) as a surfactant and incomplete carbonized glucose (ICG) as a template. Then, thermal decomposition of ammonium sulphate was employed to convert the as-synthesized material to sulfonated mesoporous NiO-ICG catalyst, in order to accelerate conversion of waste cooking palm oil (WCPO) into ester. The structural, textural, morphological, and thermal characteristics of the synthesized sulfonated mesoporous NiO-ICG catalyst were evaluated using X-ray diffraction (XRD), Raman spectroscopy, temperature programed desorption (TPD), Brunauer-Emmet-Teller (BET), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). Furthermore, the effect of different reaction parameters against reaction time were investigated. Under the optimal transesterification conditions; catalyst loading of 1 wt%, methanol to WCPO ratio of 9 : 1, operation temperature of 100 °C and mixing intensity of 450 rpm, an optimum ester yield of 95.6% was achieved. Additionally, a recyclability study proved that the spent catalyst was highly potential to be reused for nine successive transesterification reactions without further treatment. Finally, the physicochemical characteristics of the produced WCPO methyl ester were evaluated which were highly in accordance with both European (EN; 14214) and American Standards for Testing Materials (ASTM; D6751) specifications.
RESUMO
In this research work, carbon nanofibers (CNFs) were synthesized on honeycomb monolith substrates using injection chemical vapor deposition (ICVD) technique. The effect of various wash-coated materials and catalyst promoter on the growth rate of CNFs on monolith substrates were examined. The characteristics of the synthesized CNFs-coated monolith composites were examined using Raman spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), and Transmission electron microscopy (TEM) techniques. According to the textural characterization study, the specific surface area and pore volume of CNFs-coated monolith composites were significantly improved as compared to bare monolith which might be attributed to the growth of highly pure and aligned CNFs over monolith substrate. Besides that, the synthesized CNFs-coated monolith possessed extremely well thermal stability up to the temperature of 550 °C which was corresponded to the strong attachment of highly graphitized CNFs over monolith substrates.