Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Hum Mol Genet ; 32(3): 417-430, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35997776

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal storage disease caused by mutations in the gene that encodes the protein N-acetyl-glucosaminidase (NAGLU). Defective NAGLU activity results in aberrant retention of heparan sulfate within lysosomes leading to progressive central nervous system (CNS) degeneration. Intravenous treatment options are limited by the need to overcome the blood-brain barrier and gain successful entry into the CNS. Additionally, we have demonstrated that AAV8 provides a broader transduction area in the MPS IIIB mouse brain compared with AAV5, 9 or rh10. A triple-capsid mutant (tcm) modification of AAV8 further enhanced GFP reporter expression and distribution. Using the MPS IIIB mouse model, we performed a study using either intracranial six site or intracisterna magna injection of AAVtcm8-codon-optimized (co)-NAGLU using untreated MPS IIIB mice as controls to assess disease correction. Disease correction was evaluated based on enzyme activity, heparan sulfate storage levels, CNS lysosomal signal intensity, coordination, activity level, hearing and survival. Both histologic and enzymatic assessments show that each injection method results in supranormal levels of NAGLU expression in the brain. In this study, we have shown correction of lifespan and auditory deficits, increased CNS NAGLU activity and reduced lysosomal storage levels of heparan sulfate following AAVtcm8-coNAGLU administration and partial correction of NAGLU activity in several peripheral organs in the murine model of MPS IIIB.


Assuntos
Mucopolissacaridose III , Animais , Camundongos , Mucopolissacaridose III/genética , Mucopolissacaridose III/terapia , Mucopolissacaridose III/metabolismo , Capsídeo/metabolismo , Acetilglucosaminidase/genética , Acetilglucosaminidase/metabolismo , Heparitina Sulfato/metabolismo
2.
Cell ; 143(5): 802-12, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21094524

RESUMO

Caloric restriction (CR) extends the life span and health span of a variety of species and slows the progression of age-related hearing loss (AHL), a common age-related disorder associated with oxidative stress. Here, we report that CR reduces oxidative DNA damage in multiple tissues and prevents AHL in wild-type mice but fails to modify these phenotypes in mice lacking the mitochondrial deacetylase Sirt3, a member of the sirtuin family. In response to CR, Sirt3 directly deacetylates and activates mitochondrial isocitrate dehydrogenase 2 (Idh2), leading to increased NADPH levels and an increased ratio of reduced-to-oxidized glutathione in mitochondria. In cultured cells, overexpression of Sirt3 and/or Idh2 increases NADPH levels and protects from oxidative stress-induced cell death. Therefore, our findings identify Sirt3 as an essential player in enhancing the mitochondrial glutathione antioxidant defense system during CR and suggest that Sirt3-dependent mitochondrial adaptations may be a central mechanism of aging retardation in mammals.


Assuntos
Envelhecimento/metabolismo , Restrição Calórica , Perda Auditiva/prevenção & controle , Mitocôndrias/metabolismo , Estresse Oxidativo , Sirtuína 3/metabolismo , Animais , Antioxidantes/metabolismo , Dano ao DNA , Feminino , Glutationa/metabolismo , Isocitrato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sirtuína 3/genética
3.
Mol Cell ; 41(2): 139-49, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21255725

RESUMO

Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in ß-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3(-/-)) revealed alterations in ß-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3(-/-) mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino acid catabolism and ß-oxidation.


Assuntos
Restrição Calórica , Ácidos Graxos/metabolismo , Ornitina Carbamoiltransferase/metabolismo , Sirtuína 3/fisiologia , Ureia/metabolismo , Acetilação , Animais , Metabolismo Energético , Células HEK293 , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos , Mitocôndrias/metabolismo , Oxirredução , Sirtuína 3/metabolismo
4.
J Neurosci ; 37(23): 5770-5781, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28473643

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP+ to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. We investigated the roles of G6PD in the cytosolic antioxidant defense in the cochlea of G6pd hypomorphic mice that were backcrossed onto normal-hearing CBA/CaJ mice. Young G6pd-deficient mice displayed a significant decrease in cytosolic G6PD protein levels and activities in the inner ears. However, G6pd deficiency did not affect the cytosolic NADPH redox state, or glutathione or thioredoxin antioxidant defense in the inner ears. No histological abnormalities or oxidative damage was observed in the cochlea of G6pd hemizygous males or homozygous females. Furthermore, G6pd deficiency did not affect auditory brainstem response hearing thresholds, wave I amplitudes or wave I latencies in young males or females. In contrast, G6pd deficiency resulted in increased activities and protein levels of cytosolic isocitrate dehydrogenase 1, an enzyme that catalyzes the conversion of isocitrate to α-ketoglutarate and NADP+ to NADPH, in the inner ear. In a mouse inner ear cell line, knockdown of Idh1, but not G6pd, decreased cell growth rates, cytosolic NADPH levels, and thioredoxin reductase activities. Therefore, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in mouse cochlea. Under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea.SIGNIFICANCE STATEMENT Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP+ to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. In the current study, we show that, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in the mouse cochlea. However, under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea.


Assuntos
Antioxidantes/metabolismo , Percepção Auditiva/fisiologia , Cóclea/fisiopatologia , Deficiência de Glucosefosfato Desidrogenase/fisiopatologia , Glutationa/metabolismo , Tiorredoxinas/metabolismo , Animais , Citosol/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos
5.
J Neurosci ; 36(44): 11308-11319, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27807171

RESUMO

Regular physical exercise reduces the risk for obesity, cardiovascular diseases, and disability and is associated with longer lifespan expectancy (Taylor et al., 2004; Pahor et al., 2014; Anton et al., 2015; Arem et al., 2015). In contrast, decreased physical function is associated with hearing loss among older adults (Li et al., 2013; Chen et al., 2015). Here, we investigated the effects of long-term voluntary wheel running (WR) on age-related hearing loss (AHL) in CBA/CaJ mice, a well established model of AHL (Zheng et al., 1999). WR activity peaked at 6 months of age (12,280 m/d) and gradually decreased over time. At 24 months of age, the average WR distance was 3987 m/d. Twenty-four-month-old runners had less cochlear hair cell and spiral ganglion neuron loss and better auditory brainstem response thresholds at the low and middle frequencies compared with age-matched, non-WR controls. Gene ontology (GO) enrichment analysis of inner ear tissues from 6-month-old controls and runners revealed that WR resulted in a marked enrichment for GO gene sets associated with immune response, inflammatory response, vascular function, and apoptosis. In agreement with these results, there was reduced stria vascularis (SV) atrophy and reduced loss of capillaries in the SV of old runners versus old controls. Given that SV holds numerous capillaries that are essential for transporting oxygen and nutrients into the cochlea, our findings suggest that long-term exercise delays the progression of AHL by reducing age-related loss of strial capillaries associated with inflammation. SIGNIFICANCE STATEMENT: Nearly two-thirds of adults aged 70 years or older develop significant age-related hearing loss (AHL), a condition that can lead to social isolation and major communication difficulties. AHL is also associated with decreased physical function among older adults. In the current study, we show that regular exercise slowed AHL and cochlear degeneration significantly in a well established murine model. Our data suggest that regular exercise delays the progression of AHL by reducing age-related loss of strial capillaries associated with inflammation.


Assuntos
Envelhecimento , Cóclea/fisiologia , Terapia por Exercício/métodos , Condicionamento Físico Animal/métodos , Presbiacusia/prevenção & controle , Presbiacusia/fisiopatologia , Animais , Cóclea/patologia , Perda Auditiva , Masculino , Camundongos , Camundongos Endogâmicos DBA , Esforço Físico , Presbiacusia/patologia , Resultado do Tratamento
6.
J Transl Med ; 14(1): 305, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27784315

RESUMO

BACKGROUND: Mechanical ventilation (MV) during a cardio-thoracic surgery contributes to diaphragm muscle dysfunction that impairs weaning and can lead to the ventilator- induced diaphragm dysfunction. Especially, it is critical in older adults who have lower muscle reparative capacity following MV. Reports have shown that the intraoperative intermittent hemidiaphragm electrical stimulation can maintain and/or improve post-surgery diaphragm function. In particular, from a molecular point of view, intermittent ES may reduce oxidative stress and increase regulatory autophagy levels, and therefore improve diaphragm function in animal studies. We have recently shown in humans that intraoperative ES attenuates mitochondrial dysfunction and force decline in single diaphragm muscle fibers. The aim of this study was to investigate an effect of ES on oxidative stress, antioxidant status and autophagy biomarker levels in the human diaphragm during surgery. METHODS: One phrenic nerve was simulated with an external cardiac pacer in operated older subjects (62.4 ± 12.9 years) (n = 8) during the surgery. The patients received 30 pulses per min every 30 min. The muscle biopsy was collected from both hemidiaphragms and frozen for further analyses. 4-hydroxynonenal (4-HNE), an oxidative stress marker, and autophagy marker levels (Beclin-1 and the ratio of microtubule-associated protein light chain 3, I and II-LC3 II/I) protein concentrations were detected by the western blot technique. Antioxidant enzymatic activity copper-zinc (CuZnSOD) and manganese (MnSOD) superoxide dismutase were analyzed. RESULTS: Levels of lipid peroxidation (4-HNE) were significantly lower in the stimulated side (p < 0.05). The antioxidant enzyme activities (CuZnSOD and MnSOD) in the stimulated side of the diaphragm were not different than in the unstimulated side (p > 0.05). Additionally, the protein concentrations of Beclin-1 and the LC3 II/I ratio were higher in the stimulated side (p < 0.05). CONCLUSION: These results suggest that the intraoperative electrical stimulation decreases oxidative stress levels and upregulates autophagy levels in the stimulated hemidiaphragm. These results may contribute future studies and clinical applications on reducing post-operative diaphragm dysfunction.


Assuntos
Autofagia , Diafragma/patologia , Diafragma/cirurgia , Cuidados Intraoperatórios , Estresse Oxidativo , Respiração Artificial , Regulação para Cima , Idoso , Proteínas Relacionadas à Autofagia/metabolismo , Biópsia , Demografia , Estimulação Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Mol Cell Neurosci ; 55: 95-100, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22820179

RESUMO

Hearing loss is the most common sensory disorder in the elderly population. Overall, 10% of the population has a hearing loss in the US, and this age-related hearing disorder is projected to afflict more than 28 million Americans by 2030. Age-related hearing loss is associated with loss of sensory hair cells (sensory hearing loss) and/or spiral ganglion neurons (neuronal hearing loss) in the cochlea of the inner ear. Many lines of evidence indicate that oxidative stress and associated mitochondrial dysfunction play a central role in age-related neurodegenerative diseases and are a cause of age-related neurosensory hearing loss. Yet, the molecular mechanisms of how oxidative stress and/or mitochondrial dysfunction lead to hearing loss during aging remain unclear, and currently there is no treatment for this age-dependent disorder. Several mouse models of aging and age-related diseases have been linked to age-related mitochondrial neurosensory hearing loss. Evaluation of these animal models has offered basic knowledge of the mechanism underlying hearing loss associated with oxidative stress, mitochondrial dysfunction, and aging. Here we review the evidence that specific mutations in the mitochondrial DNA or nuclear DNA that affect mitochondrial function result in increased oxidative damage and associated loss of sensory hair cells and/or spiral ganglion neurons in the cochlea during aging, thereby causing hearing loss in these mouse models. Future studies comparing these models will provide further insight into fundamental knowledge about the disordered process of hearing and treatments to improve the lives of individuals with communication disorders. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.


Assuntos
Genes Mitocondriais , Mitocôndrias/genética , Presbiacusia/genética , Animais , Modelos Animais de Doenças , Células Ciliadas Auditivas/patologia , Humanos , Camundongos , Mitocôndrias/patologia , Mutação , Gânglio Espiral da Cóclea/patologia , Transgenes
8.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496399

RESUMO

Although estrogen affects the structure and function of the nervous system and brain and has a number of effects on cognition, its roles in the auditory and vestibular systems remain unclear. The actions of estrogen are mediated predominately through two classical nuclear estrogen receptors, estrogen receptor 1 (ESR1) and estrogen receptor 2 (ESR2). In the current study, we investigated the roles of ESR1 in normal auditory function and balance performance using 3-month-old wild-type (WT) and Esr1 knockout (KO) mice on a CBA/CaJ background, a normal-hearing strain. As expected, body weight of Esr1 KO females was lower than that of Esr1 KO males. Body weight of Esr1 KO females was higher than that of WT females, while there was no difference in body weight between WT and Esr1 KO males. Similarly, head diameter was higher in Esr1 KO vs. WT females. Contrary to our expectations, there were no differences in auditory brainstem response (ABR) thresholds, ABR waves I-V amplitudes and ABR waves I-V latencies at 8, 16, 32, and 48 kHz, distortion product otoacoustic emission (DPOAE) thresholds and amplitudes at 8, 16, and 32 kHz, and rotarod balance performance (latency to fall) between WT and Esr1 KO mice. Furthermore, there were no sex differences in ABRs, DPOAEs, and rotarod balance performance in Esr1 KO mice. Taken together, our findings show that Esr1 deficiency does not affect auditory function or balance performance in normal hearing mice, and suggest that loss of Esr1 is likely compensated by ESR2 or other estrogen receptors to maintain the structure and function of the auditory and vestibular systems under normal physiological conditions.

9.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766120

RESUMO

Transmembrane protein 135 (TMEM135) is a 52 kDa protein with five predicted transmembrane domains that is highly conserved across species. Previous studies have shown that TMEM135 is involved in mitochondrial dynamics, thermogenesis, and lipid metabolism in multiple tissues; however, its role in the inner ear or the auditory system is unknown. We investigated the function of TMEM135 in hearing using wild-type (WT) and Tmem135 FUN025/FUN025 ( FUN025 ) mutant mice on a CBA/CaJ background, a normal-hearing mouse strain. Although FUN025 mice displayed normal auditory brainstem response (ABR) at 1 month, we observed significantly elevated ABR thresholds at 8, 16, and 64 kHz by 3 months, which progressed to profound hearing loss by 12 months. Consistent with our auditory testing, 13-month-old FUN025 mice exhibited a severe loss of outer hair cells and spiral ganglion neurons in the cochlea. Our results using BaseScope in situ hybridization indicate that TMEM135 is expressed in the inner hair cells, outer hair cells, and supporting cells. Together, these results demonstrate that the FUN025 mutation in Tmem135 causes progressive sensorineural hearing loss, and suggest that TMEM135 is crucial for maintaining key cochlear cell types and normal sensory function in the aging cochlea.

10.
Hear Res ; 427: 108659, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493529

RESUMO

Hearing loss is the third most prevalent chronic health condition affecting older adults. Age-related hearing loss affects one in three adults over 65 years of age and is caused by both extrinsic and intrinsic factors, including genetics, aging, and exposure to noise and toxins. All cells possess antioxidant defense systems that play an important role in protecting cells against these factors. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) serves as a co-factor for antioxidant enzymes such as glutathione reductase and thioredoxin reductase and is produced by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase 1 (IDH1) or malic enzyme 1 in the cytosol, while in the mitochondria, NADPH is generated from mitochondrial transhydrogenase, glutamate dehydrogenase, malic enzyme 3 or IDH2. There are three isoforms of IDH: cytosolic IDH1, and mitochondrial IDH2 and IDH3. Of these, IDH2 is thought to be the major supplier of NADPH to the mitochondrial antioxidant defense system. The NADP+/NADPH and NAD+/NADH couples are essential for maintaining a large array of biological processes, including cellular redox state, and energy metabolism, mitochondrial function. A growing body of evidence indicates that mitochondrial dysfunction contributes to age-related structural or functional changes of cochlear sensory hair cells and neurons, leading to hearing impairments. In this review, we describe the current understanding of the roles of NADPH and IDHs in cochlear mitochondrial antioxidant defense and aging.


Assuntos
Isocitrato Desidrogenase , Mitocôndrias , NADP , Estresse Oxidativo , Idoso , Humanos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Antioxidantes/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , NADP/metabolismo , Cóclea/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia
11.
Hear Res ; 428: 108678, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577362

RESUMO

Mitochondrial dysfunction has been implicated in numerous common diseases as well as aging and plays an important role in the pathogenesis of sensorineural hearing loss (SNHL). In the current study, we showed that supplementation with germanium dioxide (GeO2) in CBA/J mice resulted in SNHL due to the degeneration of the stria vascularis and spiral ganglion, which were associated with down-regulation of mitochondrial respiratory chain associated genes and up-regulation in apoptosis associated genes in the cochlea. Supplementation with taurine, coenzyme Q10, or hydrogen-rich water, attenuated the cochlear degeneration and associated SNHL induced by GeO2. These results suggest that daily supplements or consumption of antioxidants, such as taurine, coenzyme Q10, and hydrogen-rich water, may be a promising intervention to slow SNHL associated with mitochondrial dysfunction.


Assuntos
Perda Auditiva Neurossensorial , Ubiquinona , Camundongos , Animais , Ubiquinona/farmacologia , Taurina/farmacologia , Camundongos Endogâmicos CBA , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/prevenção & controle , Cóclea , Mitocôndrias
12.
Hear Res ; 428: 108684, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599258

RESUMO

Hearing loss is the third most prevalent chronic health condition affecting older adults and age-related hearing loss (ARHL) is the most common form of hearing impairment. Significant sex differences in hearing have been documented in humans and rodents. In general, the results of these studies show that men lose their hearing more rapidly than women. However, the cellular mechanism underlying sex differences in hearing or hearing loss remains largely unknown, and to our knowledge, there is no well-established animal model for studying sex differences in hearing. In the current study, we examined sex differences in body composition, voluntary wheel running activity, balance performance, auditory function, and cochlear histology in young, middle-age, and old CBA/CaJ mice, a model of age-related hearing loss. As expected, body weight of young females was lower than that of males. Similarly, lean mass and total water mass of young, middle-age, and old females were lower than those of males. Young females showed higher voluntary wheel running activity during the dark cycle, an indicator of mobility, physical activity, and balance status, compared to males. Young females also displayed higher auditory brainstem response (ABR) wave I amplitudes at 8 kHz, wave II, III, V amplitudes at 8 and 48 kHz, and wave IV/I and V/I amplitude ratios at 48 kHz compared to males. Collectively, our findings suggest that the CBA/CaJ mouse strain is a useful model to study the cellular mechanisms underlying sex differences in physical activity and hearing.


Assuntos
Longevidade , Presbiacusia , Camundongos , Pessoa de Meia-Idade , Animais , Feminino , Humanos , Masculino , Idoso , Envelhecimento/fisiologia , Caracteres Sexuais , Atividade Motora , Limiar Auditivo/fisiologia , Camundongos Endogâmicos CBA , Audição , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Composição Corporal
13.
Proc Natl Acad Sci U S A ; 106(46): 19432-7, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19901338

RESUMO

Age-related hearing loss (AHL), known as presbycusis, is a universal feature of mammalian aging and is the most common sensory disorder in the elderly population. The molecular mechanisms underlying AHL are unknown, and currently there is no treatment for the disorder. Here we report that C57BL/6J mice with a deletion of the mitochondrial pro-apoptotic gene Bak exhibit reduced age-related apoptotic cell death of spiral ganglion neurons and hair cells in the cochlea, and prevention of AHL. Oxidative stress induces Bak expression in primary cochlear cells, and Bak deficiency prevents apoptotic cell death. Furthermore, a mitochondrially targeted catalase transgene suppresses Bak expression in the cochlea, reduces cochlear cell death, and prevents AHL. Oral supplementation with the mitochondrial antioxidants alpha-lipoic acid and coenzyme Q(10) also suppresses Bak expression in the cochlea, reduces cochlear cell death, and prevents AHL. Thus, induction of a Bak-dependent mitochondrial apoptosis program in response to oxidative stress is a key mechanism of AHL in C57BL/6J mice.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Presbiacusia/genética , Proteína Killer-Antagonista Homóloga a bcl-2/biossíntese , Fatores Etários , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cóclea/metabolismo , Cóclea/patologia , Dano ao DNA/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Presbiacusia/patologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética
14.
Hear Res ; 402: 108002, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32600853

RESUMO

Age-related hearing loss (AHL) is the most common form of hearing impairment. AHL is thought to be a multifactorial condition resulting from the interaction of numerous causes including aging, genetics, exposure to noise, and exposure to endogenous and exogenous toxins. Cells possess many detoxification enzymes capable of removing thousands of cytotoxic xenobiotics and endogenous toxins such as 4-hydroxynonenal (4-HNE), one of the most abundant cytotoxic end products of lipid peroxidation. The cellular detoxification system involves three phases of enzymatic detoxification. Of these, the glutathione transferase (GST) detoxification system converts a toxic compound into a less toxic form by conjugating the toxic compound to reduced glutathione by GST enzymes. In this review, we describe the current understanding of the cochlear detoxification system and examine the growing link between GST detoxification, oxidative lipid damage, ototoxicity, and cochlear aging with a particular focus on the alpha-class GSTs (GSTAs). We also describe how exposure to ototoxic drugs, exposure to noise, or aging results in increased 4-HNE levels, how 4-HNE damages various cell components under stress conditions, and how GSTAs detoxify 4-HNE in the auditory system.


Assuntos
Ototoxicidade , Envelhecimento , Aldeídos/toxicidade , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Peroxidação de Lipídeos , Lipídeos , Estresse Oxidativo
15.
Neurotox Res ; 39(4): 1227-1237, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33900547

RESUMO

Paraquat, a superoxide generator, can damage the cochlea causing an ototoxic hearing loss. The purpose of the study was to determine if deletion of Bak, a pro-apoptotic gene, would reduce paraquat ototoxicity or if deletion of Sirt3, which delays age-related hearing loss under caloric restriction, would increase paraquat ototoxicity. We tested these two hypotheses by treating postnatal day 3 cochlear cultures from Bak±, Bak-/-, Sirt3±, Sirt3-/-, and WT mice with paraquat and compared the results to a standard rat model of paraquat ototoxicity. Paraquat damaged nerve fibers and dose-dependently destroyed rat outer hair cells (OHCs) and inner hair cells (IHCs). Rat hair cell loss began in the base of the cochlea with a 10 µM dose and as the dose increased from 50 to 500 µM, the hair cell loss increased near the base of the cochlea and spread toward the apex of the cochlea. Rat OHC losses were consistently greater than IHC losses. Unexpectedly, in all mouse genotypes, paraquat-induced hair cell lesions were maximal near the apex of the cochlea and minimal near the base. This unusual damage gradient is opposite to that seen in paraquat-treated rats and in mice and rats treated with other ototoxic drugs. However, paraquat always induced greater OHC loss than IHC loss in all mouse strains. Contrary to our hypothesis, Bak deficient mice were more vulnerable to paraquat ototoxicity than WT mice (Bak-/- > Bak± > WT), suggesting that Bak plays a protective role against hair cell stress. Also, contrary to expectation, Sirt3-deficient mice did not differ significantly from WT mice, possibly due to the fact that Sirt3 was not experimentally upregulated in Sirt3-expressing mice prior to paraquat treatment. Our results show for the first time a gradient of ototoxic damage in mice that is greater in the apex than the base of the cochlea.


Assuntos
Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Herbicidas/toxicidade , Paraquat/toxicidade , Sirtuína 3/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Animais , Animais Recém-Nascidos , Células Cultivadas , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Cóclea/patologia , Relação Dose-Resposta a Droga , Feminino , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Sirtuína 3/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética
16.
Exp Gerontol ; 133: 110872, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32044382

RESUMO

The glutathione transferase (GST) detoxification system converts exogenous and endogenous toxins into a less toxic form by conjugating the toxic compound to reduced glutathione (GSH) by a variety of GST enzymes. Of the ~20 GST isoforms, GSTA4 exhibits high catalytic efficiency toward 4-hydroxynonenal (4-HNE), one of the most abundant end products of lipid peroxidation that contributes to neurodegenerative diseases and age-related disorders. Conjugation to GSH by GSTA4 is thought to be a major route of 4-HNE elimination. In the current study, we investigated the effects of Gsta4 deficiency on age-related cochlear pathology and hearing loss using young (3-5 months old) and old (24-25 months old) Gsta4+/+ and Gsta4-/- mice that were backcrossed onto the CBA/CaJ mouse strain, a well-established model of age-related hearing loss (AHL). At 3-5 months of age, loss of Gsta4 resulted in decreased total GSTA activity toward 4-HNE in the inner ears of young mice. However, there were no differences in the levels of 4-HNE in the inner ears between Gsta4+/+ and Gsta4-/- mice at 3-5 or 24-25 months of age. No histological abnormalities were observed in the cochlea and no hearing impairments were observed in young Gsta4-/- mice. At 24-25 months of age, both Gsta4+/+ and Gsta4-/- mice showed elevated ABR thresholds compared to 3-month-old mice, but there were no differences in ABR thresholds, cochlear spiral ganglion neuron densities, or stria vascularis thickness between Gsta4+/+ and Gsta4-/- mice. Together, these results suggest that under normal physiological conditions or during normal aging, GSTA4 is not essential for removal of 4-HNE in mouse inner ears.


Assuntos
Cóclea , Glutationa Transferase/genética , Presbiacusia , Envelhecimento , Animais , Camundongos , Camundongos Endogâmicos CBA , Gânglio Espiral da Cóclea
17.
Neurosci Res ; 158: 6-15, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31622631

RESUMO

Despite recent advances in genome engineering technologies, traditional transgenic mice generated on a mixed genetic background of C57BL/6 and 129/Sv mice remain widely used in age-related hearing loss (AHL) research, since C57BL/6 mice exhibit early onset and progression of AHL due to a mutation in cadherin 23-encoding gene (Cdh23753G>A). In these transgenic mice, backcrossing for more than 10 generations results in replacement of the donor background (129/Sv) with that of the recipient (C57BL/6), so that approximately 99.9% of genes are C57BL/6-derived and are considered congenic. However, the regions flanking the target gene may still be of 129/Sv origin, creating a so-called "passenger gene problem" where the normal 129/Sv-derived Cdh23753G allele can travel with the target gene. In this study, we investigated the role of fatty acid-binding protein 7 (Fabp7), which is important for cellular uptake and intracellular trafficking of fatty acids in the cochlea, using traditional Fabp7 knockout (KO) mice on the C57BL/6 background. We found that Fabp7 KO mice showed delayed AHL progression and milder cochlear degeneration. However, the genotype of the Cdh23 region flanking Fabp7 was still that of 129/Sv origin (Cdh23753GG). Our findings reveal the potential risk of contamination for traditional transgenic mice generated on the C57BL/6 background.


Assuntos
Presbiacusia , Animais , Caderinas/genética , Cóclea , Modelos Animais de Doenças , Audição , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação
18.
Exp Gerontol ; 141: 111078, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866605

RESUMO

Thioredoxin 2 (TXN2) is a small redox protein found in nearly all organisms. As a mitochondrial member of the thioredoxin antioxidant defense system, TXN2 interacts with peroxiredoxin 3 (PRDX3) to remove hydrogen peroxide. Accordingly, TXN2 is thought to play an important role in maintaining the appropriate mitochondrial redox environment and protecting the mitochondrial components against oxidative stress. In the current study, we investigated the effects of Txn2 haplodeficiency on cochlear antioxidant defenses, auditory function, and cochlear cell loss across the lifespan in wild-type (WT) and Txn2 heterozygous knockout (Txn2+/-) mice backcrossed onto CBA/CaJ mice, a well-established model of age-related hearing loss. Txn2+/- mice displayed a 58% decrease in TXN2 protein levels in the mitochondria of the inner ears compared to WT mice. However, Txn2 haplodeficiency did not affect the thioredoxin or glutathione antioxidant defense in both the mitochondria and cytosol of the inner ears of young mice. There were no differences in the levels of mitochondrial biogenesis markers, mitochondrial DNA content, or oxidative DNA and protein damage markers in the inner ears between young WT and Txn2+/- mice. In a mouse inner ear cell line, knockdown of Txn2 did not affect cell viability under hydrogen peroxide treatment. Consistent with the tissue and cell line results, there were no differences in hair cell loss or spiral ganglion neuron density between WT and Txn2+/- mice at 3-5 or 23-25 months of age. Furthermore, Txn2 haplodeficiency did not affect auditory brainstem response threshold, wave I latency, or wave I amplitude at 3-5, 15-16, or 23-25 months of age. Therefore, Txn2 haplodeficiency does not affect cochlear antioxidant defenses, accelerate degeneration of cochlear cells, or affect auditory function in mice across the lifespan.


Assuntos
Antioxidantes , Perda Auditiva , Animais , Limiar Auditivo , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva/genética , Longevidade , Camundongos , Camundongos Endogâmicos CBA
19.
Exp Gerontol ; 142: 111123, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33191210

RESUMO

Aging is the primary risk factor for functional decline; thus, understanding and preventing disability among older adults has emerged as an important public health challenge of the 21st century. The science of gerontology - or geroscience - has the practical purpose of "adding life to the years." The overall goal of geroscience is to increase healthspan, which refers to extending the portion of the lifespan in which the individual experiences enjoyment, satisfaction, and wellness. An important facet of this goal is preserving mobility, defined as the ability to move independently. Despite this clear purpose, this has proven to be a challenging endeavor as mobility and function in later life are influenced by a complex interaction of factors across multiple domains. Moreover, findings over the past decade have highlighted the complexity of walking and how targeting multiple systems, including the brain and sensory organs, as well as the environment in which a person lives, can have a dramatic effect on an older person's mobility and function. For these reasons, behavioral interventions that incorporate complex walking tasks and other activities of daily living appear to be especially helpful for improving mobility function. Other pharmaceutical interventions, such as oxytocin, and complementary and alternative interventions, such as massage therapy, may enhance physical function both through direct effects on biological mechanisms related to mobility, as well as indirectly through modulation of cognitive and socioemotional processes. Thus, the purpose of the present review is to describe evolving interventional approaches to enhance mobility and maintain healthspan in the growing population of older adults in the United States and countries throughout the world. Such interventions are likely to be greatly assisted by technological advances and the widespread adoption of virtual communications during and after the COVID-19 era.


Assuntos
COVID-19/epidemiologia , Geriatria , Desempenho Físico Funcional , SARS-CoV-2 , Idoso , Envelhecimento/fisiologia , Ritmo Circadiano/fisiologia , Cognição , Terapias Complementares , Humanos , Pessoa de Meia-Idade , Limitação da Mobilidade , Transtornos do Sono-Vigília/complicações
20.
Front Neurosci ; 13: 1255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824252

RESUMO

Usher's syndrome is the most common combined blindness-deafness disorder with USH1B, caused by mutations in MYO7A, resulting in the most severe phenotype. The existence of numerous, naturally occurring shaker1 mice harboring variable MYO7A mutations on different genetic backgrounds has complicated the characterization of MYO7A knockout (KO) and heterozygote mice. We generated a novel MYO7A KO mouse (Myo7a - / -) that is easily genotyped, maintained, and confirmed to be null for MYO7A in both the eye and inner ear. Like USH1B patients, Myo7a - / - mice are profoundly deaf, and display near complete loss of inner and outer cochlear hair cells (HCs). No gross structural changes were observed in vestibular HCs. Myo7a - / - mice exhibited modest declines in retinal function but, unlike patients, no loss of retinal structure. We attribute the latter to differential expression of MYO7A in mouse vs. primate retina. Interestingly, heterozygous Myo7a + / - mice had reduced numbers of cochlear HCs and concomitant reductions in auditory function relative to Myo7a +/+ controls. Notably, this is the first report that loss of a single Myo7a allele significantly alters auditory structure and function and suggests that audiological characterization of USH1B carriers is warranted. Maintenance of vestibular HCs in Myo7a - / - mice suggests that gene replacement could be used to correct the vestibular dysfunction in USH1B patients. While Myo7a - / - mice do not exhibit sufficiently robust retinal phenotypes to be used as a therapeutic outcome measure, they can be used to assess expression of vectored MYO7A on a null background and generate valuable pre-clinical data toward the treatment of USH1B.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA