Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nat Chem Biol ; 19(1): 55-63, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577875

RESUMO

Engineered destruction of target proteins by recruitment to the cell's degradation machinery has emerged as a promising strategy in drug discovery. The majority of molecules that facilitate targeted degradation do so via a select number of ubiquitin ligases, restricting this therapeutic approach to tissue types that express the requisite ligase. Here, we describe a new strategy of targeted protein degradation through direct substrate recruitment to the 26S proteasome. The proteolytic complex is essential and abundantly expressed in all cells; however, proteasomal ligands remain scarce. We identify potent peptidic macrocycles that bind directly to the 26S proteasome subunit PSMD2, with a 2.5-Å-resolution cryo-electron microscopy complex structure revealing a binding site near the 26S pore. Conjugation of this macrocycle to a potent BRD4 ligand enabled generation of chimeric molecules that effectively degrade BRD4 in cells, thus demonstrating that degradation via direct proteasomal recruitment is a viable strategy for targeted protein degradation.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Proteínas Nucleares/metabolismo , Microscopia Crioeletrônica , Fatores de Transcrição/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ligases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Nano Lett ; 24(1): 165-171, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38010996

RESUMO

The inherent zero-band gap nature of graphene and its fast photocarrier recombination rate result in poor optical gain and responsivity when graphene is used as the light absorption medium in photodetectors. Here, semiconducting graphene nanoribbons with a direct bandgap of 1.8 eV are synthesized and employed to construct a vertical heterojunction photodetector. At a bias voltage of -5 V, the photodetector exhibits a responsivity of 1052 A/W, outperforming previous graphene-based heterojunction photodetectors by several orders of magnitude. The achieved detectivity of 3.13 × 1013 Jones and response time of 310 µs are also among the best values for graphene-based heterojunction photodetectors reported until date. Furthermore, even under zero bias, the photodetector demonstrates a high responsivity and detectivity of 1.04 A/W and 2.45 × 1012 Jones, respectively. The work shows a great potential of graphene nanoribbon-based photodetection technology.

3.
Nano Lett ; 24(28): 8602-8608, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954477

RESUMO

Currently, the construction of anti-ambipolar transistors (AATs) is primarily based on asymmetric heterostructures, which are challenging to fabricate. AATs used for photodetection are accompanied by dark currents that prove difficult to suppress, resulting in reduced sensitivity. This work presents light-triggered AATs based on an in-plane lateral WSe2 homojunction without van der Waals heterostructures. In this device, the WSe2 channel is partially electrically controlled by the back gate due to the screening effect of the bottom electrode, resulting in a homojunction that is dynamically modulated with gate voltage, exhibiting electrostatically reconfigurable and light-triggered anti-ambipolar behaviors. It exhibits high responsivity (188 A/W) and detectivity (8.94 × 1014 Jones) under 635 nm illumination with a low power density of 0.23 µW/cm2, promising a new approach to low-power, high-performance photodetectors. Moreover, the device demonstrates efficient self-driven photodetection. Furthermore, ternary inverters are realized using monolithic WSe2, simplifying the manufacturing of multivalued logic devices.

4.
Bioconjug Chem ; 35(2): 245-253, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38236171

RESUMO

N-Boc-N-(2-(tritylthio)ethoxy)glycine has been developed as a building block for peptide ubiquitination, which is fully compatible with solid-phase Fmoc chemistry and common peptide modifications including phosphorylation, methylation, acetylation, biotinylation, and fluorescence labeling. The optimal conditions for peptide cleavage and auxiliary removal were obtained. The utility of this building block in peptide ubiquitination was demonstrated by the synthesis of seven ubiquitinated histone and Tau peptides bearing various modifications. Cys residues were well tolerated and did not require orthogonal protection. The structural integrity and folding of the synthesized ubiquitinated peptides were confirmed by enzymatic deubiquitination of a fluorescently labeled ubiquitin conjugate. The synthetic strategy using this building block provides a practical approach for the preparation of ubiquitinated peptides with diverse modifications.


Assuntos
Glicina , Peptídeos , Peptídeos/química , Ubiquitinação , Ubiquitina , Processamento de Proteína Pós-Traducional
5.
Bioconjug Chem ; 35(2): 174-186, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38050929

RESUMO

Biotin- and digoxigenin (DIG)-conjugated therapeutic drugs are critical reagents used for the development of anti-drug antibody (ADA) assays for the assessment of immunogenicity. The current practice of generating biotin and DIG conjugates is to label a therapeutic antibody with biotin or DIG via primary amine groups on lysine or N-terminal residues. This approach modifies lysine residues nonselectively, which can impact the ability of an ADA assay to detect those ADAs that recognize epitopes located at or near the modified lysine residue(s). The impact of the lysine modification is considered greater for therapeutic antibodies that have a limited number of lysine residues, such as the variable heavy domain of heavy chain (VHH) antibodies. In this paper, for the first time, we report the application of site-specifically conjugated biotin- and DIG-VHH reagents to clinical ADA assay development using a model molecule, VHHA. The site-specific conjugation of biotin or DIG to VHHA was achieved by using an optimized reductive alkylation approach, which enabled the majority of VHHA molecules labeled with biotin or DIG at the desirable N-terminus, thereby minimizing modification of the protein after labeling and reducing the possibility of missing detection of ADAs. Head-to-head comparison of biophysical characterization data revealed that the site-specific biotin and DIG conjugates demonstrated overall superior quality to biotin- and DIG-VHHA prepared using the conventional amine coupling method, and the performance of the ADA assay developed using site-specific biotin and DIG conjugates met all acceptance criteria. The approach described here can be applied to the production of other therapeutic-protein- or antibody-based critical reagents that are used to support ligand binding assays.


Assuntos
Biotina , Lisina , Biotina/química , Digoxigenina/química , Anticorpos , Aminas
6.
Nanotechnology ; 35(15)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38198735

RESUMO

Electronical properties of top gate amorphous InGaZnO4thin film transistors (TFTs) could be controlled by post-annealing treatment, which has a great impact on the Al2O3insulator. To investigate the effect of post-annealing on Al2O3, Al/Al2O3/p-Si MOS capacitoras with Al2O3films treated under various post-deposition annealing (PDA) temperature were employed to analysis the change of electrical properties, surface morphology, and chemical components by electrical voltage scanning, atomic force microscope (AFM), and x-ray photoelectron spectroscopy (XPS) technologies. After PDA treatment, the top gate TFTs had a mobility about 7 cm2V-1s-1and the minimum subthreshold swing (SS) about 0.11 V/dec, and the threshold voltage (Vth) shifted from positive direction to negative direction as the post-annealing temperature increased. Electrical properties of MOS capacitors revealed the existence of positive fixed charges and the variation of trap state density with increasing PDA temperature, and further explained the change of negative bias stress (NBS) stability in TFT. AFM results clarified the increased leakage current, degraded SS, and NBS stability in MOS capacitors and TFTs, respectively. XPS results not only illuminated the origin of fixed charges and the trap density variation with PDA temperatures of Al2O3films, but also showed the O and H diffusion from Al2O3into IGZO during post-annealing process, which led to the deviation ofVth, the change of current density, and the negativeVthshift after positive bias stress in TFTs.

7.
Nano Lett ; 23(17): 8132-8139, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37668256

RESUMO

The resonant tunneling diode (RTD) is one of the very few room-temperature-operating quantum devices to date that is able to exhibit negative differential resistance. However, the reported key figure of merit, the current peak-to-valley ratio (PVR), of graphene RTDs has been up to only 3.9 at room temperature thus far. This remains very puzzling, given the atomically flat interfaces of the 2D materials. By varying the active area and perimeter of RTDs based on a graphene/hexagonal boron nitride/graphene heterostructure, we discovered that the edge doping can play a dominant role in determining the resonant tunneling, and a large area-to-perimeter ratio is necessary to obtain a high PVR. The understanding enables establishing a novel design rule and results in a PVR of 14.9, which is at least a factor of 3.8 higher than previously reported graphene RTDs. Furthermore, a theory is developed allowing extraction of the edge doping depth for the first time.

8.
Nano Lett ; 23(19): 9170-9177, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37493397

RESUMO

Two-dimensional (2D) materials possess unique properties primarily due to the quantum confinement effect, which highly depends on their thicknesses. Identifying the number of atomic layers in these materials is a crucial, yet challenging step. However, the commonly used optical reflection method offers only very low contrast. Here, we develop an approach that shows unprecedented sensitivity by analyzing the brightness of dark-field optical images. The brightness of the 2D material edges has a linear dependence on the number of atomic layers. The findings are modeled by Rayleigh scattering, and the results agree well with the experiments. The relative contrast of single-layer graphene can reach 70% under white-light incident conditions. Furthermore, different 2D materials were successfully tested. By adjusting the exposure conditions, we can identify the number of atomic layers ranging from 1 to over 100. Finally, this approach can be applied to various substrates, even transparent ones, making it highly versatile.

9.
Biochemistry ; 62(3): 633-644, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985287

RESUMO

Autophagy-related proteins (Atgs) drive the lysosome-mediated degradation pathway, autophagy, to enable the clearance of dysfunctional cellular components and maintain homeostasis. In humans, this process is driven by the mammalian Atg8 (mAtg8) family of proteins comprising the LC3 and GABARAP subfamilies. The mAtg8 proteins play essential roles in the formation and maturation of autophagosomes and the capture of specific cargo through binding to the conserved LC3-interacting region (LIR) sequence within target proteins. Modulation of interactions of mAtg8 with its target proteins via small-molecule ligands would enable further interrogation of their function. Here we describe unbiased fragment and DNA-encoded library (DEL) screening approaches for discovering LC3 small-molecule ligands. Both strategies resulted in compounds that bind to LC3, with the fragment hits favoring a conserved hydrophobic pocket in mATG8 proteins, as detailed by LC3A-fragment complex crystal structures. Our findings demonstrate that the malleable LIR-binding surface can be readily targeted by fragments; however, rational design of additional interactions to drive increased affinity proved challenging. DEL libraries, which combine small, fragment-like building blocks into larger scaffolds, yielded higher-affinity binders and revealed an unexpected potential for reversible, covalent ligands. Moreover, DEL hits identified possible vectors for synthesizing fluorescent probes or bivalent molecules for engineering autophagic degradation of specific targets.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Humanos , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Ligantes , Família da Proteína 8 Relacionada à Autofagia/química , Autofagossomos/metabolismo , Mamíferos/metabolismo
10.
Opt Express ; 30(15): 27453-27461, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236916

RESUMO

Self-powered UV photodetectors and imaging arrays based on p-type NiO/n-type InGaZnO (IGZO) heterojunctions are fabricated at room temperature by using ratio-frequency magnetron sputtering. The p-n heterojunction exhibits typical rectifying characteristics with a rectification ratio of 7.4×104 at a ±4 V applied bias. A high photo-responsivity of 28.8 mA/W is observed under zero bias at a wavelength of 365 nm. The photodetector possesses a fast response time of 15 ms which is among the best in reported oxide-based p-n junction-based UV photodetectors. Finally, recognition of an "H" pattern is demonstrated by a 10×10 photodetector array at zero bias. The results indicate that the NiO/IGZO based photodetectors may have a great potential in constructing large-scale self-powered UV imaging systems.

11.
Proc Natl Acad Sci U S A ; 116(11): 4843-4848, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804190

RESUMO

Despite being a fundamental electronic component for over 70 years, it is still possible to develop different transistor designs, including the addition of a diode-like Schottky source electrode to thin-film transistors. The discovery of a dependence of the source barrier height on the semiconductor thickness and derivation of an analytical theory allow us to propose a design rule to achieve extremely high voltage gain, one of the most important figures of merit for a transistor. Using an oxide semiconductor, an intrinsic gain of 29,000 was obtained, which is orders of magnitude higher than a conventional Si transistor. These same devices demonstrate almost total immunity to negative bias illumination temperature stress, the foremost bottleneck to using oxide semiconductors in major applications, such as display drivers. Furthermore, devices fabricated with channel lengths down to 360 nm display no obvious short-channel effects, another critical factor for high-density integrated circuits and display applications. Finally, although the channel material of conventional transistors must be a semiconductor, by demonstrating a high-performance transistor with a semimetal-like indium tin oxide channel, the range and versatility of materials have been significantly broadened.

12.
Ecotoxicol Environ Saf ; 241: 113730, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691194

RESUMO

Severe pollution of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and their brominated analogues (PBDD/Fs) was frequently reported for the waters located near unregulated e-waste recycling areas. However, the migrations of these high-level dioxins via waterways and their potential threats to the lower reaches were seldom investigated. In this study, we analyzed PCDD/Fs and PBDD/Fs in 27 surficial sediments collected from the Lian River encompassing the Guiyu, China e-waste recycling zone, and investigated their distributions, sources, migration behaviors and risks. Both PCDD/Fs and PBDD/Fs in these sediments exhibited a spatial trend of Guiyu > Guiyu downriver > Guiyu upriver, illustrating that the Guiyu e-waste recycling activities were the uppermost dioxin contributors in this watershed. Sediments from different Guiyu villages demonstrated big gaps in PCDD/F concentrations and congener compositions, and the reason was attributed to the diverse e-waste recycling activities practiced in these villages. Sediments near the e-waste open-burning areas demonstrated extremely high PCDD/F concentrations and unique PCDD/F profiles featured by low-chlorinated PCDFs (tetra- to hexa-), which is quite different from the OCDD-dominant PCDD/F profile found in most of the Lian River sediments. The geographical distributions of PCDD/F concentrations and profiles illustrate that the substantial amount of PCDD/Fs in Guiyu sediments were mainly retained in local and vicinal water bodies. The principal component analysis (PCA) results further confirm that the high-level PCDD/Fs in Guiyu sediments exhibited quite limited translocations downstream and therefore exerted little influences on the lower reaches. Pentachlorophenol use in history, ceramic industry and vehicle exhaust were diagnosed as the major PCDD/F sources for most sediments of the Lian River. Total toxicity equivalent quantities (TEQs) of 70% of the Lian River sediments surpassed the high-risk limit specified for mammalian life by the U.S.EPA (25 pg TEQ g-1), and most of these sediments were from Guiyu and its near downstream, which merit continuous attention and necessary remediation measures.


Assuntos
Benzofuranos , Dioxinas , Resíduo Eletrônico , Dibenzodioxinas Policloradas , Benzofuranos/análise , China , Dibenzofuranos/análise , Dibenzofuranos Policlorados/análise , Dioxinas/análise , Resíduo Eletrônico/análise , Monitoramento Ambiental , Dibenzodioxinas Policloradas/análise
13.
Bioorg Chem ; 116: 105360, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562676

RESUMO

Proper recognition of invading pathogens and prompt initiation of host defense mechanisms are instrumental for the maintenance of organismal homeostasis. Nucleotide-binding oligomerization domain-containing (NOD)-like receptors (NLRs) serve as pathogen-recognition receptors that specifically recognize bacterial peptidoglycans. NOD2 detects muramyl dipeptide (MDP) through its carboxy-terminal leucine rich repeats (LRRs), which enables the activation of downstream inflammatory signaling. Synthesis of MDP conjugates based on solution phase chemistry have been previously reported. Our solid phase approach synthetically provides a facile approach for the conjugation of biological probes to MDP, with the advantage of minimal functional/protecting group manipulation, and reduction in the laborious process of intermediate purification and isolation. MDP conjugates that we generated using solid phase synthesis allow detection of NOD2 is cell lysates and NOD2 subcellular localization by immunofluorescence microscopy. MDP-PEG6-Cyanine5.5 conjugate selectively colocalized with WT NOD2 but not NOD2 variant found in Crohn's disease, which lacks carboxy-terminal end and cannot bind MDP. Overall, these data indicate that distinct solid phase-produced MDP conjugates can be used to examine biological properties of NOD2 and could potentially facilitate further development of NOD2 targeting agents.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/síntese química , Proteína Adaptadora de Sinalização NOD2/análise , Técnicas de Síntese em Fase Sólida , Células A549 , Acetilmuramil-Alanil-Isoglutamina/química , Células HEK293 , Humanos , Microscopia de Fluorescência , Estrutura Molecular
14.
Bioorg Chem ; 116: 105376, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560560

RESUMO

Antitumor immune responses depend on the infiltration of solid tumors by effector T cells, a process guided by chemokines. In particular, the chemokine CXCL10 has been shown to play a critical role in mediating recruitment of CXCR3 + cytolytic T and NK cells in tumors, though its use as a therapeutic agent has not been widely explored. One of the limitations is due to the rapid inactivation of CXCL10 by dipeptidyl peptidase 4 (DPP4), a broadly expressed enzyme that is active in plasma and other bodily fluids. In the present study, we describe a novel method to produce synthetic CXCL10 that is resistant to DPP4 N-terminal truncation. Using a Fmoc solid-phase peptide synthesis approach, synthetic murine WT CXCL10 was produced, showing similar biochemical and biological properties to the recombinant protein. This synthesis method supported production of natural (amino acid substitution, insertion or deletion) and non-natural (chemical modifications) variants of CXCL10. In association with a functional screening cascade that assessed DPP4-mediated cleavage, CXCR3 signaling potency and chemotactic activity, we successfully generated 20 murine CXCL10 variants. Among those, two non-natural variants with N-methylated Leu3 (MeLeu3) and a reduced amide bond between Pro2 and Leu3 (rLeu3), respectively, showed resistance to DPP4 truncation but decreased CXCR3 signaling and chemotactic activity. Interestingly, MeLeu3 and rLeu3 CXCL10 behaved as DPP4 inhibitors, preventing the truncation of WT CXCL10. This study highlights the potential of using Fmoc solid-phase chemistry in association with biochemical and biological characterization to rapidly identify CXCL10 variants with desired properties. These novel methods unlock the opportunity to develop DPP4 resistant CXCL10 variants, as well as other chemokine substrates, while maintaining chemotactic properties.


Assuntos
Quimiocina CXCL10/farmacologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Quimiocina CXCL10/síntese química , Quimiocina CXCL10/química , Inibidores da Dipeptidil Peptidase IV/síntese química , Inibidores da Dipeptidil Peptidase IV/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
15.
Nanotechnology ; 30(36): 364004, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31151127

RESUMO

Here, we present theory and measurements for a bridge rectifier formed from arrays of graphene self-switching diodes (GSSDs). Despite graphene's lack of a bandgap and high carrier concentration causing a reduced rectification ratio, the extremely high carrier mobility will allow GSSDs to work at frequencies well into the THz region. Compared with a single SSD array, the bridge rectifier structure allows for full-wave rectification of an AC signal. Here we derive an equation for the voltage output of a bridge rectifier formed from GSSDs, which predicts a quadratic relationship between output voltage and input current. This relationship is confirmed using AC and DC measurements. The fabricated rectifier is found to have a high room temperature intrinsic responsivity of [Formula: see text] at low frequency and a low noise equivalent power of [Formula: see text].

16.
Nano Lett ; 17(11): 7015-7020, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29016145

RESUMO

A graphene ballistic rectifier is used in conjunction with an antenna to demonstrate a rectenna as a terahertz (THz) detector. A small-area (<1 µm2) local gate is used to adjust the Fermi level in the device to optimize the output while minimizing the impact on the cutoff frequency. The device operates in both n- and p-type transport regimes and shows a peak extrinsic responsivity of 764 V/W and a corresponding noise equivalent power of 34 pW Hz-1/2 at room temperature with no indications of a cutoff frequency up to 0.45 THz. The device also demonstrates a linear response for more than 3 orders of magnitude of input power due to its zero threshold voltage, quadratic current-voltage characteristics and high saturation current. Finally, the device is used to take an image of an optically opaque object at 0.685 THz, demonstrating potential in both medical and security imaging applications.

18.
Phys Chem Chem Phys ; 18(26): 17404-13, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27138558

RESUMO

While TiO2 nanotube arrays cosensitized with CdS and PbS quantum dots can achieve water splitting under visible light excitation, the use of quantum dots is limited by the relatively slow interfacial hole transfer rate and low internal quantum efficiencies in the visible region. Al2O3 overcoating by atomic layer deposition (ALD) can drastically enhance the photoelectrochemical performance of the quantum dot-sensitized TiO2 nanotube arrays. 30 ALD cycles of the Al2O3 overlayer can achieve a good balance between surface coverage and charge transfer resistance. The resulting maximum photocurrent density of 5.19 mA cm(-2) under simulated solar illumination shows a 52 times improvement over the pure TiO2 nanotube arrays, and more significantly, a 60% enhancement over bare quantum dot-sensitized TiO2 nanotube arrays. The incident photon-to-current conversion efficiency can reach the record value of 83% at 350 nm and remain above 30% up to 450 nm. A systematic examination of the role of the ALD Al2O3 overlayer indicates that surface recombination passivation, catalytic improvement in interfacial charge transfer kinetics, and chemical stabilization might synergistically enhance the photoelectrochemical performance in the visible region. These results provide a physical insight into the facile surface treatment, which could be applied to develop and optimize high-performance photoelectrodes for artificial photosynthesis.

19.
J Org Chem ; 80(7): 3677-81, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25769022

RESUMO

An orthogonally protected hypusine reagent was developed for solid-phase synthesis of hypusinated peptides using the Fmoc/t-Bu protection strategy. The reagent was synthesized in an overall yield of 27% after seven steps from Cbz-Lys-OBzl and (R)-3-hydroxypyrrolidin-2-one. The side-chain protecting groups (Boc and t-Bu) are fully compatible with standard Fmoc chemistry and can be readily removed during the peptide cleavage step. The utility of the reagent was demonstrated by solid-phase synthesis of hypusinated peptides.


Assuntos
Aminoácidos/síntese química , Lisina/análogos & derivados , Peptídeos/síntese química , Pirrolidinonas/química , Sequência de Aminoácidos , Aminoácidos/química , Indicadores e Reagentes/química , Lisina/síntese química , Lisina/química , Estrutura Molecular , Peptídeos/química , Técnicas de Síntese em Fase Sólida
20.
Environ Toxicol Chem ; 43(4): 748-761, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38088252

RESUMO

Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH) with the most carcinogenic effects of all the PAHs, has multiple toxic effects on marine bivalves. We investigated the interference mechanism of B[a]P on food metabolism (sugars, proteins, and sugars), and on reproductive endocrine and ovarian development in female scallops (Chlamys farreri). Scallops were exposed to different concentrations of B[a]P concentrations of 0, 0.38, 3.8, and 38 µg/L throughout gonadal development. Total cholesterol and triglyceride contents in the digestive glands were increased, and their synthesis genes were upregulated. The plasma glucose contents decreased with the inhibition of glycogen synthesis genes and the induction of glycolysis genes in the digestive gland. The results showed that B[a]P had endocrine-disrupting effects on scallops, that it negatively affected genes related to ovarian cell proliferation, sex differentiation, and egg development, and that it caused damage to ovarian tissue. Our findings supplement the information on B[a]P disruption in gonadal development of marine bivalves. Environ Toxicol Chem 2024;43:748-761. © 2023 SETAC.


Assuntos
Benzo(a)pireno , Pectinidae , Animais , Feminino , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Diferenciação Sexual , Pectinidae/genética , Pectinidae/metabolismo , Alimentos Marinhos , Açúcares/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA