Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Virol ; : e0052124, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874361

RESUMO

The reoccurrence of successive waves of SARS-CoV-2 variants suggests the exploration of more vaccine alternatives is imperative. Modified vaccinia virus Ankara (MVA) is a virus vector exhibiting excellent safety as well as efficacy for vaccine development. Here, a series of recombinant MVAs (rMVAs) expressing monomerized or trimerized S proteins from different SARS-CoV-2 variants are engineered. Trimerized S expressed from rMVAs is found predominantly as trimers on the surface of infected cells. Remarkably, immunization of mice with rMVAs demonstrates that S expressed in trimer elicits higher levels of binding IgG and IgA, as well as neutralizing antibodies for matched and mismatched S proteins than S in the monomer. In addition, trimerized S expressed by rMVA induces enhanced cytotoxic T-cell responses than S in the monomer. Importantly, the rMVA vaccines expressing trimerized S exhibit superior protection against a lethal SARS-CoV-2 challenge as the immunized animals all survive without displaying any pathological conditions. This study suggests that opting for trimerized S may represent a more effective approach and highlights that the MVA platform serves as an ideal foundation to continuously advance SARS-CoV-2 vaccine development. IMPORTANCE: MVA is a promising vaccine vector and has been approved as a vaccine for smallpox and mpox. Our analyses suggested that recombinant MVA expressing S in trimer (rMVA-ST) elicited robust cellular and humoral immunity and was more effective than MVA-S-monomer. Importantly, the rMVA-ST vaccine was able to stimulate decent cross-reactive neutralization against pseudoviruses packaged using S from different sublineages, including Wuhan, Delta, and Omicron. Remarkably, mice immunized with rMVA-ST were completely protected from a lethal challenge of SARS-CoV-2 without displaying any pathological conditions. Our results demonstrated that an MVA vectored vaccine expressing trimerized S is a promising vaccine candidate for SARS-CoV-2 and the strategy might be adapted for future vaccine development for coronaviruses.

2.
Can J Infect Dis Med Microbiol ; 2024: 7502110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660494

RESUMO

Introduction: The development of combinatorial adjuvants is a promising strategy to boost vaccination efficiency. Accumulating evidence indicates that manganese exerts strong immunocompetence and will become an enormous potential adjuvant. Here, we described a novel combination of Mn2+ plus aluminum hydroxide (AH) adjuvant that significantly exhibited the synergistic immune effect. Methodology. Initially, IsdB3 proteins as the immune-dominant fragment of IsdB proteins derived from Staphylococcus aureus (S. aureus) were prepared. IsdB3 proteins were identified by western blotting. Furthermore, we immunized C57/B6 mice with IsdB3 proteins plus Mn2+ and AH adjuvant. After the second immunization, the proliferation of lymphocytes was measured by the cell counting kit-8 (CCK-8) and the level of IFN-γ, IL-4, IL-10, and IL-17 cytokine from spleen lymphocytes in mice and generation of the antibodies against IsdB3 in serum was detected with ELISA, and the protective immune response was assessed through S. aureus challenge. Results: IsdB3 proteins plus Mn2+ and AH obviously stimulated the proliferation of spleen lymphocytes and increased the secretion of IFN-γ, IL-4, IL-10, and IL-17 cytokine in mice, markedly enhanced the generation of the antibodies against IsdB3 in serum, observably decreased bacterial load in organs, and greatly improved the survival rate of mice. Conclusion: These data showed that the combination of Mn2+ and AH significantly acted a synergistic effect, reinforced the immunogenicity of IsdB3, and offered a new strategy to increase vaccine efficiency.

3.
Microb Pathog ; 144: 104167, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32222538

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase-C (GapC) is a highly conserved surface protein of Staphylococcus aureus, with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, which represents an excellent vaccine candidate antigen. It can induce protective immune responses to S. aureus infections. However, CD4+ T cell epitopes of GapC that induce CD4+ T cell immune responses are currently unclear. In this study, we used bioinformatics prediction algorithms to predict CD4+ T cell epitopes of GapC. Ten peptides were synthesized to investigate the candidate epitopes. Our results showed that the peptides, G4 (GapC 104-123) and G10 (GapC 314-333) were able to induce proliferation of CD4+ T cells and secrete high levels of interferon (IFN)-γ, respectively. In addition, they significantly reduced bacterial loads in tissue and induced immunoprotective effects. It is suggested that G4 and G10 are Th1-type epitopes of S. aureus GapC. This study provides the potential development of the design of epitope-based vaccine against S. aureus.


Assuntos
Anticorpos Antibacterianos/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Gliceraldeído-3-Fosfato Desidrogenases/imunologia , Staphylococcus aureus/imunologia , Algoritmos , Animais , Carga Bacteriana/imunologia , Vacinas Bacterianas/imunologia , Proliferação de Células/fisiologia , Biologia Computacional , Feminino , Gliceraldeído-3-Fosfato Desidrogenases/genética , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
4.
Biosci Biotechnol Biochem ; 84(9): 1846-1855, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32501144

RESUMO

Here, we prepared the novel combined adjuvants, CTB as intra-molecular adjuvant, CpG and aluminum hydroxide (Alum) to strengthen the immunogenicity of clumping factor A221-550 of Staphylococcus aureus (S. aureus). The protein-immunoactive results showed CTB-ClfA221-550 elicited the strong immune responses to serum from mice immunized with CTB and ClfA221-550, respectively. The mice immunized with CTB-ClfA221-550 plus CpG and Alum adjuvant exhibited significantly stronger CD4+ T cell responses for IFN-γ, IL-2, IL-4, and IL-17 and displayed the higher proliferation response of splenic lymphocytes than the control groups, in addition, these mice generated the strongest humoral immune response against ClfA221-550 among all groups. Our results also showed CTB-ClfA221-550 plus CpG and Alum adjuvant obviously increased the survival percentage of the mice challenged by S. aureus. These data suggested that the novel combined adjuvants, CTB, CpG, and Alum, significantly enhance the immune responses triggered with ClfA221-550, and could provide a new approach against infection of S. aureus. ABBREVIATIONS: CTB: Cholera Toxin B; CpG: Cytosine preceding Guanosine; ODN: Oligodeoxynucleotides; Alum: Aluminum hydroxide; TRAP: Target of RNAIII-activating Protein; TLR9: Toll-like Receptor 9; TMB: 3, 3', 5, 5'-tetramethylbenzidine; mAbs: Monoclonal Antibodies; OD: Optical Densities; S. aureus: Staphylococcus aureus; ClfA: Clumping factor A; FnBPA: Fibronection-binding protein A; IsdB: Iron-regulated surface determinant B; SasA: Staphylococcus aureus Surface Protein A; GapC: Glycer-aldehyde-3-phosphate dehydrogenase-C.


Assuntos
Adjuvantes Imunológicos/farmacologia , Hidróxido de Alumínio/farmacologia , Toxina da Cólera/farmacologia , Coagulase/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Interações Medicamentosas , Imunização , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Camundongos , Oligodesoxirribonucleotídeos/farmacologia
5.
Microb Pathog ; 136: 103676, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31437577

RESUMO

The purpose of this investigation was to construct a recombinant Escherichia coli strain displaying the Staphylococcus aureus target of RNAIII activating protein (TRAP) on its surface, and to investigate the strain for its immunogenicity. The lpp'ompA and lpp'ompA-TRAP genes were fused by the overlap polymerase chain reaction and then ligated into expression plasmid pQE30 producing pLO and pLO-TRAP. These two recombinant plasmids were transformed into E. coli XL1-Blue, resulting in XL1-Blue/pLO and XL1-Blue/pLO-TRAP, which were induced to express protein. The expressed TRAP protein was displayed on the surface of XL1-Blue as judged by whole cell ELISA, flow cytometric analysis, and laser scanning confocal microscopy using the lpp'ompA surface display system. ICR mice were intramuscularly immunized with recombinant strains XL1-Blue/pLO and XL1-Blue/pLO-TRAP as well as recombinant protein TRAP. Immunized mice were assessed for anti-TRAP antibody and lymphocytes for secreted IL-4 and IFN-γ by ELISPOT and secreted IL-17A by indirect ELISA. Immunized mice were challenged with S. aureus Newman and HLJ23-1 strains. The results showed both XL1-Blue/pLO-TRAP and TRAP protein immunized mice to produce better cellular and humoral immunity than XL1-Blue/pLO and PBS injected mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Técnicas de Visualização da Superfície Celular , Proteínas de Membrana/imunologia , Proteínas Recombinantes de Fusão/imunologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Anticorpos Antibacterianos/sangue , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Portadores de Fármacos , ELISPOT , Escherichia coli/genética , Escherichia coli/metabolismo , Injeções Intramusculares , Linfócitos/imunologia , Proteínas de Membrana/genética , Camundongos Endogâmicos ICR , Proteínas Recombinantes de Fusão/genética , Vacinas Antiestafilocócicas/administração & dosagem , Vacinas Antiestafilocócicas/genética
6.
Microb Pathog ; 118: 1-8, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29524545

RESUMO

We previously developed a stable and marker-free Lactobacillus casei strain (PPαT Δupp) that contained a chromosomally integrated expression cassette (PPαT) that enabled the surface expression of the Clostridium perfringens alpha toxin. To measure immune responses against the alpha toxin, specific-pathogen-free BALB/c mice were inoculated with L. casei PPαT Δupp by oral gavage. Then, specific immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies and cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FCM). The results showed that alpha toxin-specific IgA and IgG antibodies and cytokines were markedly increased following immunization. Natural alpha toxin challenge and neutralization tests were performed. The results showed that immunized mice can fully resist 1.5 minimum lethal doses of toxin. These results indicated that the immunized mice can produce not only humoral immunity, but also cellular immunity. These results provide a new pathway for the development of a safe, effective, and food-grade vaccine.


Assuntos
Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/farmacologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/farmacologia , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação ao Cálcio/farmacologia , Imunização , Lacticaseibacillus casei/imunologia , Lacticaseibacillus casei/metabolismo , Fosfolipases Tipo C/biossíntese , Fosfolipases Tipo C/imunologia , Fosfolipases Tipo C/farmacologia , Administração Oral , Animais , Anticorpos Antibacterianos/análise , Anticorpos Antibacterianos/imunologia , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/genética , Vacinas Bacterianas/genética , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/prevenção & controle , Clostridium perfringens/genética , Clostridium perfringens/imunologia , Citocinas/sangue , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Instabilidade Genômica , Imunidade Celular , Imunidade Humoral , Imunoglobulina A/análise , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Lacticaseibacillus casei/genética , Dose Letal Mediana , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Organismos Livres de Patógenos Específicos , Fosfolipases Tipo C/genética , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
7.
Cytogenet Genome Res ; 153(1): 36-45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29169149

RESUMO

Interferon-γ (IFN-γ), a cytokine produced by activated natural killer cells and T lymphocytes, is an important regulator of innate and adaptive immunity. Interleukin (IL)-18, also known as IFN-γ-inducing factor, is a cytokine that induces T and natural killer cells to produce IFN-γ. In this study, the chicken IL-18 (ChIL-18) and chicken IFN-γ (ChIFN-γ) genes were inserted into the pET28a prokaryotic expression vector, resulting in pET28a-IL-18 and pET28a-IFN-γ, respectively. These plasmids were transformed into Escherichia coli strain BL21, and the ChIL-18 and ChIFN-γ proteins were expressed and purified. To determine their antiviral activities, 200 ng/mL of ChIL-18 and/or ChIFN-γ were inoculated into chicken embryonic fibroblast cells. After 24 h, one 50% tissue culture infective dose (TCID50) of infectious bursal disease virus (IBDV) was inoculated into the chicken embryonic fibroblast cells. The results showed that the antiviral effect of ChIL-18 and ChIFN-γ in combination was better than that of ChIL-18 or ChIFN-γ alone. Next, 14-day-old chicken were injected with 200 µg of ChIL-18 and/or ChIFN-γ and then were challenged with 103 TCID50 of IBDV via intraperitoneal injection. The results showed that the proliferation of IBDV was inhibited by the injection of the recombinant proteins, especially the combination of ChIL-18 and ChIFN-γ, as evidenced by cytokine detection, quantitative PCR, and pathology analyses. These results indicate that ChIL-18 and ChIFN-γ could inhibit IBDV infection and the combination of ChIL-18 and ChIFN-γ has a better inhibitory effect than either cytokine alone.


Assuntos
Infecções por Birnaviridae/prevenção & controle , Vírus da Doença Infecciosa da Bursa/imunologia , Interferon gama/genética , Interleucina-18/genética , Replicação Viral/imunologia , Animais , Antivirais/metabolismo , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Embrião de Galinha , Galinhas , Escherichia coli/genética , Escherichia coli/metabolismo , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-18/biossíntese , Interleucina-18/imunologia , Células Matadoras Naturais/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Plasmídeos/genética , Replicação Viral/genética
8.
Microb Pathog ; 105: 288-297, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28179116

RESUMO

Streptococcus is one of the main pathogens that cause bovine mastitis. They includes into S.agalactiae, S.dysgalactiae, and S.uberis. The GapC protein is a virulence factor that is expressed on the surface of Streptococcus species. GapC is highly antigenic and immunization with GapC confers cross-protection against all three species. Our previous data showed that amino acids 1-150 of GapC (GapC1-150) of S. dysgalactiae conferred similar immunoprotection compared to full-length GapC. Thus, the present study aimed to construct a recombinant Escherichia coli XL1-Blue strain that displayed GapC1-150 on its surface, and to investigate the immunogenicity of the surface-localized GapC1-150. To do so, the ompA gene of the E. coli XL1-Blue strain was replaced with the lpp'-ompA-gapC11-150 or lpp'-ompA genes by λ Red recombination, the former of which fused GapC1-150 to an Lpp lipoprotein signal peptide and amino acids 1-159 of OmpA; the recombinant strains were named XL1-Blue/LOG76 and XL1-Blue/LO11, respectively. GapC1-150 was confirmed to localize to the surface of the XL1-Blue/LOG76 strain by an indirect enzyme-linked immunosorbent assay (ELISA), a fluorescence-activated cell sorter analysis, and laser-scanning confocal microscopy. Then, ICR mice were immunized intramuscularly with the XL1-Blue/LOG76 or XL1-Blue/LO11 strains, or recombinant GapC1-150. The sera of the immunized mice were collected and the anti-GapC1-150 antibody levels were detected by ELISA. Lymphocytes secreting interleukin (IL)-4 and interferon-γ were detected by an enzyme-linked ImmunoSpot assay, as was the level of IL-17A level in the supernatant of cultured splenic lymphocytes. The mice immunized with the XL1-Blue/LOG76 strain or GapC1-150 exhibited better cellular and humoral immunity. Lastly, the immunized mice were challenged with S. uberis, S. dysgalactiae, and S. agalactiae strains, and mice that were immunized with the XL1-Blue/LOG76 strain were better protected than those that were immunized with the XL1-Blue/LO11 strain. These results indicate that it is feasible to display GapC1-150 on the E. coli surface as a vaccine against Streptococcus species.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Vacinas Estreptocócicas/imunologia , Streptococcus/imunologia , Aminoácidos/genética , Aminoácidos/imunologia , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Bovinos , Citocinas/imunologia , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Interferon gama/sangue , Interleucina-17/sangue , Interleucina-4/sangue , Mastite Bovina/microbiologia , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas Estreptocócicas/genética , Streptococcus/genética , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia
9.
Microb Pathog ; 91: 46-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657721

RESUMO

The GapC protein is highly conserved surface dehydrogenase among Streptococcus dysgalactiae (S. dysgalactiae) and is shown to be involved in bacterial virulence. Immunization of GapC protein can induce specific CD4(+) T-cell immune responses and protect against S. dysgalactiae infection. However, there are no studies to identify immunodominant CD4(+) T-cell epitopes on GapC protein. In this study, in silico MHC affinity measurement method was firstly used to predict potential CD4(+) T-cell epitopes on GapC protein. Six predictive 15-mer peptides were synthesized and two novel GapC CD4(+) T-cell epitopes, GapC63-77 and GapC96-110, were for the first time identified using CD4(+) T-cells obtained from GapC-immunized BALB/c (H-2(d)) and C57BL/6 (H-2(b)) mice spleen based on cell proliferation and cytokines response. The results showed that peptides containing 63-77 and 96-110 induced significant antigen-specific CD4(+) T-cells proliferation response in vivo. At the same time, high levels of IFN-γ and IL-17A, as well as moderate levels of IL-10 and IL-4 were detected in CD4(+) T-cells isolated from both GapC and peptide-immunized mice in vivo, suggesting that GapC63-77 and GapC96-110 preferentially elicited polarized Th1/Th17-type responses. The characterization of GapC CD4(+) T-cell epitopes not only helps us understand its protective immunity, but also contributes to design effective T-cell epitope-based vaccine against S. dysgalactiae infection.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Mapeamento de Epitopos , Epitopos de Linfócito T/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Streptococcus/genética
10.
Microb Pathog ; 100: 84-89, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27633794

RESUMO

Enterovirus 71 (EV71) is a human pathogen that induces hand, foot, and mouth disease (HFMD) and fatal neurological diseases in young children and infants. Pathogenicity of EV71 is likely related to its ability to evade host innate immunity through inhibiting cellular type I interferon signaling. However, it is less well understood the molecular events governing this process. In this study, we found that EV71 infection suppressed the induction of antiviral immunity by inhibiting the expression levels of IFN-ß and IFN-stimulated genes (ISGs), such as ISG54 and ISG56, at the late stage of viral infection. At the same time, our results showed that EV71 infection significantly inhibited ubiquitination of RIG-I. In contrast, up-regulation of RIG-I ubiquitination promoted expression of IFN-ß and ISGs, suggesting that inhibition of cellular type I interferon signaling was caused by down-regulation of RIG-I ubiquitination during EV71 infection. These results suggest that inhibition of RIG-I-mediated type I IFN responses by EV71 may contribute to the pathogenesis of viral infection.


Assuntos
Proteína DEAD-box 58/antagonistas & inibidores , Enterovirus Humano A/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Interferon Tipo I/antagonistas & inibidores , Transdução de Sinais , Ubiquitinação , Linhagem Celular Tumoral , Proteína DEAD-box 58/metabolismo , Enterovirus Humano A/patogenicidade , Humanos , Processamento de Proteína Pós-Traducional , Receptores Imunológicos
11.
Microb Pathog ; 89: 108-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423555

RESUMO

Iron-regulated surface determinant B (IsdB) of Staphylococcus aureus (S. aureus) is a highly conserved surface protein that can induce protective CD4(+) T-cell immune response. A pivotal role of CD4(+) T-cells in effective immunity against S. aureus infection has been proved, but CD4(+) T-cell epitopes on the S. aureus IsdB have not been well identified. In this study, MHC binding assay was firstly used to predict CD4(+) T-cell epitopes on S. aureus IsdB protein, and six peptides were synthesized to validate the probable epitopes. Two novel IsdB CD4(+) T-cell epitopes, P1 (residues 159-178) and P4 (residues 287-306), were for the first time identified using CD4(+) T-cells obtained from IsdB-immunized C57BL/6 (H-2(b)) and BALB/c (H-2(d)) mice spleen based on cell proliferation and cytokines response. The results showed that P1 and P4 emulsified in Freund's adjuvant (FA) induced much higher cell proliferation compared with PBS emulsified in FA. CD4(+) T-cells stimulated with peptides P1 and P4 secreted significantly higher levels of IFN-γ and IL-17A. However, the level of the cytokine IL-4 almost remained unchanged, suggesting that P1 and P4 preferentially elicited polarized Th1-type responses. In addition, BALB/c mice just respond to P4 not P1, while C57BL/6 mice respond to P1 not P4, implying that epitope P1 and P4 were determined as H-2(b) and H-2(d) restricted epitope, respectively. Taken together, our data may provide an explanation of the IsdB-induced protection against S. aureus and highlight the possibility of developing the epitope-based vaccine against the S. aureus.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas de Transporte de Cátions/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Staphylococcus aureus/imunologia , Animais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
12.
Appl Environ Microbiol ; 80(11): 3321-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657853

RESUMO

To develop a stable and marker-free Lactobacillus strain useful for the expression of vaccines, we developed a temperature-sensitive suicide plasmid with expression cassettes containing an HCE promoter, a PgsA anchor, the alpha-toxin gene, and an rrnB T1T2 terminator (PPαT) that uses a 5-fluorouracil (5-FU) counterselectable marker for Lactobacillus casei. Three strains containing the correct PPαT expression cassettes were produced via the selective pressure of 5-FU screening. We confirmed that the upp gene was deleted and that the PPαT expression cassettes were inserted into the upp site of L. casei ATCC 393 by genomic PCR amplification and sequencing. 5-FU resistance in recombinant bacteria could be stably inherited for as long as 40 generations following insertion. However, bacteria containing the integrated DNA grew more slowly than wild-type L. casei. An indirect enzyme-linked immunosorbent assay (ELISA) analysis demonstrated that the alpha-toxin gene was expressed. Also, we visualized expression of the protein on the surface of L. casei cells using laser confocal microscopy. These results taken together demonstrate that these recombinant bacteria should provide a safe tool for effective vaccine production.


Assuntos
Antígenos/genética , Antígenos/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Lacticaseibacillus casei/genética , Mutagênese Insercional , Técnicas de Visualização da Superfície Celular , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Biologia Molecular/métodos , Plasmídeos
13.
J Immunoassay Immunochem ; 35(3): 241-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24654821

RESUMO

The aim of this article was to develop an indirect enzyme-linked immunosorbent assay (ELISA) for efficient detection of the infection of E. coli in cattle. OmpT, a highly conserved protease in all E. coli strains, was successfully expressed in E. coli XL-1-Blue strain with PET32a vector. Molecular weight of recombinant protein was identified by analyzing SDS-PAGE and the immunogenicity of OmpT was confirmed by Western Blotting. The recombinant OmpT was then employed as capture antigen in the ELISA. The antigen concentration and serum dilution were determined using a checkerboard titration. Results showed that the optimal concentration of coated antigen was 1 µg/ml at a serum dilution of 1:640 and the cut-off value of the assay was 0.335. In addition, the cross-reactivity assay showed that the OmpT was E. coli specific and the reproducibility experiments displayed good repeatability of the assay. Three hundred and forty cattle serum samples were tested by rOmpT-ELISA and sera coagulation tests. The ELISA has showed relative sensitivity of 100% and specificity of 96.47%. Results of these experiments indicated that the rOmpT-ELISA is a simple, rapid, and convenient method for detection the infection of E. coli with different serotype strains.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/imunologia , Técnica Indireta de Fluorescência para Anticorpo/métodos , Mastite Bovina/diagnóstico , Peptídeo Hidrolases/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Bovinos , Ensaio de Imunoadsorção Enzimática , Escherichia coli/imunologia , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Expressão Gênica , Peroxidase do Rábano Silvestre/química , Mastite Bovina/sangue , Mastite Bovina/microbiologia , Peptídeo Hidrolases/genética , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade
14.
NPJ Vaccines ; 9(1): 65, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514651

RESUMO

Lumpy skin disease virus (LSDV) is a poxvirus that mainly affects cattle and can lead to symptoms such as severe reduction in milk production as well as infertility and mortality, which has resulted in dramatic economic loss in affected countries in Africa, Europe, and Asia. In this study, we successfully isolated two strains of LSDV from different geographical regions in China. Comparative genomic analyses were performed by incorporating additional LSDV whole genome sequences reported in other areas of Asia. Our analyses revealed that LSDV exhibited an 'open' pan-genome. Phylogenetic analysis unveiled distinct branches of LSDV evolution, signifying the prevalence of multiple lineages of LSDV across various regions in Asia. In addition, a reporter LSDV expressing eGFP directed by a synthetic poxvirus promoter was generated and used to evaluate the cell tropism of LSDV in various mammalian and avian cell lines. Our results demonstrated that LSDV replicated efficiently in several mammalian cell lines, including human A549 cells. In conclusion, our results underscore the necessity for strengthening LSD outbreak control measures and continuous epidemiological surveillance.

15.
Microbiol Immunol ; 57(12): 857-64, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24117875

RESUMO

The pathogen Staphylococcus aureus causes a wide range of serious infections, necessitating urgent development of a vaccine against this organism. However, currently developed vaccines are relatively ineffective because of the limited antigenic component that is contained in the vaccine formulations. To develop an effective S. aureus candidate vaccine, overlapping PCR was used to add the truncated immunodominant antigen iron-regulated surface determinant B (IsdB)(N126-P361) (tIsdB) to the N-terminal of intact antigen target of RNAIII activating protein (TRAP) and thus construct a tIsdB-TRAP chimera. The humoral and cellular immune responses against tIsdB-TRAP were compared with those against single or combined formulations. tIsdB-TRAP elicited significantly stronger humoral responses in mice (P < 0.05). As to cellular immune responses in mice, the tIsdB-TRAP group resulted in a greater IL-4 response than did other groups (P < 0.05). Greater amounts of IL-2 and IFN-γ were found in the tIsdB-TRAP group. Mouse challenge also showed that tIsdB-TRAP provided better protection against S. aureus than did the control groups. These results suggest that this chimeric protein may be a promising pathogen target for further vaccine development.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Transporte de Cátions/imunologia , Fosfoproteínas/imunologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/administração & dosagem , Vacinas Antiestafilocócicas/imunologia , Vacinação/métodos , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/genética , Bioensaio , Proteínas de Transporte de Cátions/genética , Modelos Animais de Doenças , Feminino , Interferon gama/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfoproteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas Antiestafilocócicas/genética , Análise de Sobrevida , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
16.
Artigo em Zh | MEDLINE | ID: mdl-24812837

RESUMO

OBJECTIVE: To analyze the immunogenicity of recombinant glutathione S-transferase protein of Fasciola hepatica (FhGST) in SD rats. METHODS: The recombinant expression plasmid pET30a-FhGST was transformed into E. coli BL21 (DE3) cells and induced with IPTG for protein expression. The recombinant protein FhGST was analyzed by SDS-PAGE and identified by Western blotting. Twenty SD rats were randomly divided into two groups: immunized group and adjuvant control group. SD rats in immunized group were injected subcutaneously with 200 microg of purified FhGST protein. The adjuvant control group with 10 SD rats received only adjuvants emulsified with PBS. All the rats received three immunizations at 3-week intervals. Serum samples were collected at pre-immunization, the day after each immunization, 3 weeks and 6 weeks after the final immunization. The IgG antibody of rats' sera was examined by indirect ELISA and spleen lymphocyte proliferation (SLP) was tested by MTT. RESULTS: The molecular weight of purified FhGST was about M(r) 31 300. The recombinant FhGST was recognized by pool sera of goats naturally infected with F. hepatica. The recombinant protein induced specific antibody IgG against GST protein in SD rats significantly higher than that of the control, and the antibody titer reached the peak at 9 weeks after the first immunization (GMT 1:89 144). FhGST protein significantly enhanced the growth and proliferation of rat splenocytes. CONCLUSION: The recombinant FhGST protein induces specific immune response in SD rats.


Assuntos
Fasciola hepatica/imunologia , Glutationa Transferase/imunologia , Proteínas Recombinantes/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Fasciola hepatica/enzimologia , Feminino , Glutationa Transferase/genética , Imunização , Imunoglobulina G/sangue , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética
17.
Front Cell Infect Microbiol ; 13: 1213694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259972

RESUMO

A large amount of evidence shows that different kinds of microorganisms can jointly cope with environmental pressures including cell hosts. For example, in many cases, it has been found that secondary or mixed infection of animals caused by ORFV (an epitheliophilic Parapoxvirus) and bacteria (such as Staphylococcus aureus or Streptococcus) shows a mutual aid mode that indirectly leads to the deterioration of the disease. However, the lack of research on the co-pathogenic mechanism, including how to hijack and destroy the cell host in the pathological microenvironment, has hindered the in-depth understanding of the pathogenic process and consequences of this complex infection and the development of clinical treatment methods. Here, we summarized the current strategies of trapping cell hosts together, based on the previously defined ORFV-Host (O-H) system. The opportunistic invasion of S. aureus destroyed the delicate dynamic balance of the O-H, thus aggravating tissue damage through bacterial products (mediated by Agr), even causing sepsis or inducing cytokine storms. In fact, the virus products from its adaptive regulatory system (VARS) weaken the immune attacks and block molecular pathways, so that S. aureus can settle there more smoothly, and the toxins can penetrate into local tissues more quickly. This paper focuses on the main challenges faced by cell hosts in dealing with mixed infection, which provides a starting point for us to deal with this disease in the future.


Assuntos
Coinfecção , Vírus do Orf , Infecções Estafilocócicas , Animais , Staphylococcus aureus , Síndrome da Liberação de Citocina
18.
Infect Drug Resist ; 16: 5729-5740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670981

RESUMO

Background: Virus infection can cause the changes of lncRNA expression levels to regulate the interaction between virus and host, but the relationship between BHV-1 infection and lncRNA has not been reported. Methods: In this study, in order to reveal the molecular mechanism of RNA in BoHV-1 infection, the Madin-Darby bovine kidney (MDBK) cells were infected with BoHV-1, transcriptome sequencing were performed by next-generation sequencing at 18 h or 24 h or 33 h of viral infection and then based on the competitive endogenous RNA (ceRNA) theory, lncRNA-miRNA-mRNA networks were constructed using these high-throughput sequencing data. The network analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for functional annotation and exploration of ncRNA ceRNAs in BoHV-1 infection. Results: The results showed that 48 lncRNAs, 123 mRNAs and 20 miRNAs as differentially expressed genes, and the mitogen activated protein kinase (MAPK) pathway and calcium signaling pathway were significantly enriched in the ceRNA network. Some differentially expressed lncRNA genes were randomly selected for verification by RT-qPCR, and the results showed that their expression trend was consistent with the results of transcriptome sequencing data. Conclusion: This study revealed that BoHV-1 infection can affect the expression of RNAs in MDBK cells and the regulation of ceRNA network to carry out corresponding biological functions in the host, but further experimental studies are still necessary to prove the hub genes function in ceRNA network and the molecular mechanism in BoHV-1 infection.

19.
Iran J Immunol ; 20(1): 57-66, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36932950

RESUMO

Background: Staphylococcus aureus is an opportunistic pathogen responsible for various infections with diverse clinical presentation and severity. The α-hemolysin is a major virulence factor in the pathogenesis of S. aureus infections. Objective: To produce a chimeric fusion protein for hemolytic detection of the S. aureus isolates and as a component of a multi-antigen vaccine. Methods: The fused strategy employed a flexible linker to incorporate the possible B cell and T cell determinants into one chimera (HlaD). The humoral and cellular response to the HlaD in mice was assessed to reveal a non-significant difference compared with the full-length α-hemolysin mutant (Hla H35L). Results: The results of the protective effect, the mimetic lung cell injury, and bacterial clearness demonstrated that the mice vaccinated with the HlaD alleviated the severity of the infection of the S. aureus, and the HlaD could similarly function with Hla H35L. Conclusion: The chimeric fusion (HlaD) provided a diagnostic antigen for hemolysis of the S. aureus strains and a potential vaccine component.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Staphylococcus aureus/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Pulmão/metabolismo , Fatores de Virulência/metabolismo
20.
Immun Inflamm Dis ; 11(7): e928, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37506158

RESUMO

INTRODUCTION: Staphylococcus aureus seriously threatens human and animal health. IsdB137-361 of the iron surface determinant B protein (IsdB) from S. aureus exhibits the strong immunogenicity, but its immunoprotective effect is still to be further promoted. Because PEI-PLGA nanoparticles are generated by PEI conjugate with PLGA to develop great potential as a novel immune adjuvant, the immunogenicity of IsdB137-361 is likely be strengthened by PEI-PLGA. METHODS: Here, PEI-PLGA nanoparticles containing IsdB137-361 proteins were prepared by optimizing the entrapment efficiency. Mice were immunized with IsdB137-361 -PEI-PLGA nanoparticles to assess their anti-S. aureus effects. The level of IFN-γ, IL-4, IL-17, and IL-10 cytokines from spleen lymphocytes in mice and generation of the antibodies against IsdB137-361 in serum was assessed by ELISA, the protective immune response was appraised by S. aureus challenge. RESULTS: IsdB137-361 proteins loaded by PEI-PLGA were able to stimulate effectively the proliferation of spleen lymphocytes and increase the secretion of IFN-γ, IL-4, IL-17, and IL-10 cytokine from spleen lymphocytes, and significantly enhance generation of the antibodies against IsdB137-361 in serum, reduce the level of bacterial load in liver, spleen and kidney, and greatly improve the survival rate of mice after challenge. CONCLUSION: These data showed that PEI-PLGA nanoparticles can significantly enhance the immunogenicity of IsdB137-361 proteins, and provide an important reference for the development of novel immune adjuvant.


Assuntos
Nanopartículas , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Staphylococcus aureus , Interleucina-10 , Interleucina-17 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Interleucina-4 , Proteínas de Membrana , Adjuvantes Imunológicos , Citocinas , Infecções Estafilocócicas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA