Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(12)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38526101

RESUMO

This paper introduces a spin-free formulation of the supporting subspace factorization [C. Song and T. J. Martínez, J. Chem. Phys. 149, 044108 (2018)], enabling a reduction in the computational scaling of the extended multi-state complete active space second-order perturbation (XMS-CASPT2) method for arbitrary spins. Compared to the original formulation that is defined in the spin orbitals and is limited to singlet states, the spin-free formulation in this work treats different spin states equivalently, thus naturally generalizing the idea beyond singlet states. In addition, we will present a new way of deriving the supporting subspace factorization with the purpose of understanding its physical interpretation. In this new derivation, we separate the sources that make CASPT2 difficult into the "same-site interactions" and "inter-site interactions." We will first show how the Kronecker sum can be used to remove the same-site interactions in the absence of inter-site interactions, leading to MP2 energy in dressed orbitals. We will then show how the inter-site interactions can be exactly recovered using Löwdin partition, where the supporting subspace concept will naturally arise. The new spin-free formulation maintains the main advantage of the supporting subspace factorization, i.e., allowing XMS-CASPT2 energies to be computed using highly optimized MP2 energy codes and Fock build codes, thus reducing the scaling of XMS-CASPT2 to the same scaling as MP2. We will present and discuss results that benchmark the accuracy and performance of the new method. To demonstrate how the new method can be useful in studying real photochemical systems, the supporting subspace XMS-CASPT2 is applied to a photoreaction sensitive to magnetic field effects. The new spin-free formulation makes it possible to calculate the doublet and quartet states required in this particular photoreaction mechanism.

2.
J Sep Sci ; 47(3): e2300801, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356234

RESUMO

Generic electromembrane extraction (EME) methods were developed and optimized for basic analytes of moderate or low polarity, employing prototype conductive vial EME equipment. Two generic methods, B1 and B2, were devised for mono- and dibasic compounds with distinct polarity windows: 2.0 < log P < 6.0 for B1 and 1.0 < log P < 4.5 for B2. In B1, 10 µL of 2-nitrophenyl octyl ether served as the liquid membrane, while B2 utilized 10 µL of 2-undecanone. Both methods involved the acidification of 125 µL of human plasma samples with 125 µL of sample diluent (0.5 M HCOOH for B1 and 1.0 M HCOOH for B2). The acceptor phase consisted of 250 µL of 100 mM HCOOH. Extraction was conducted for 30 min with agitation at 800 rpm, employing an extraction potential of 100 V for B1 and 50 V for B2. A set of 90 pharmaceutical compounds was employed as model analytes. Both B1 and B2 demonstrated high recoveries (40%-100%) for the majority of model analytes within their respective polarity windows. Intra-day precision was within 2.2% and 9.7% relative standard deviation. Both extraction systems exhibited stability in terms of current, matrix effect values were between 90% and 109%.

3.
J Environ Manage ; 355: 120472, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452620

RESUMO

The contradiction between economic growth demands and the achievement of the "dual-carbon" goals at the regional level is a pressing issue in China. As a significant economic and cultural center in the western region of China, the Guanzhong Plain urban agglomeration has experienced rapid development and urbanization, making it one of the key areas for national development. Therefore, greater attention should be given to carbon emission reduction in this region. This study focuses on the dataset from 2010 to 2019 in the Guanzhong Plain urban agglomeration, utilizing an input-output table to construct a carbon dioxide emission inventory. The research investigates the impact of regional classification on carbon emission levels within the Guanzhong Plain urban agglomeration. Furthermore, the Tapio decoupling analysis method is employed to assess the decoupling coefficient between regional economic development and carbon emissions. Additionally, the Theil index inequality analysis method is utilized to measure the disparities in per capita carbon emissions among cities within the region. Research findings indicate the following: 1) The regional classification of the Guanzhong Plain urban agglomeration is an effective policy for reducing regional carbon emissions and promoting carbon emissions reduction. 2) There exist variations in energy and industrial structures among cities within the urban agglomeration, necessitating tailored measures for low-carbon transition based on the specific circumstances of each city. 3) The regional classification of the urban agglomeration significantly influences the degree of decoupling between economic development and carbon emissions, with a trend towards stronger decoupling. The study suggests that cities within the Guanzhong Plain urban agglomeration should adopt measures aligned with their natural conditions and economic characteristics to achieve a low-carbon transition. Leveraging the regional cooperation capacity of the urban agglomeration is crucial to decouple economic development from carbon emissions, thereby promoting sustainable economic growth and environmental protection in a mutually beneficial manner.


Assuntos
Desenvolvimento Econômico , Urbanização , Cidades , China , Dióxido de Carbono/análise
4.
J Chem Theory Comput ; 20(15): 6632-6651, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39088696

RESUMO

This study presents the polarizable quantum mechanics/molecular mechanics (QM/MM) embedding of the state-averaged complete active space self-consistent field (SA-CASSCF) in the atomic multipole optimized energetics for biomolecular applications (AMOEBA) force field for the purpose of studying photoreactions in protein environments. We describe two extensions of our previous work that combine SA-CASSCF with AMOEBA water models, allowing it to be generalized to AMOEBA models for proteins and other macromolecules. First, we discuss how our QM/MM model accounts for the discrepancy between the direct and polarization electric fields that arises in the AMOEBA description of intramolecular polarization. A second improvement is the incorporation of link atom schemes to treat instances in which the QM/MM boundary goes through covalent bonds. A single-link atom scheme and double-link atom scheme are considered in this work, and we will discuss how electrostatic interaction, van der Waals interaction, and various kinds of valence terms are treated across the boundary. To test the accuracy of the link atom scheme, we will compare QM/MM with full QM calculations and study how the errors in ground state properties, excited state properties, and excitation energies change when tuning the parameters in the link atom scheme. We will also test the new SA-CASSCF/AMOEBA method on an elementary reaction step in NanoLuc, an artificial bioluminescence luciferase. We will show how the reaction mechanism is different when calculated in the gas phase, in polarizable continuum medium (PCM), versus in protein AMOEBA models.


Assuntos
Proteínas , Teoria Quântica , Proteínas/química , Simulação de Dinâmica Molecular , Processos Fotoquímicos , Água/química , Eletricidade Estática
5.
Toxicology ; 508: 153923, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147090

RESUMO

Deoxynivalenol (DON), one of the most common mycotoxins in food and feed, can cause acute and chronic liver injury, posing a serious health risk to humans and animals. One of the important manifestations of DON-induced hepatotoxicity is ferroptosis. It has been reported that CYP2E1 can mediated ferroptosis, but the role of DON-induced CYP2E1 in DON-induced ferroptosis in hepatocytes is unknown. In the present study, we observed that DON significantly increased the expression of CYP2E1 and decreased the expression of the ferroptosis inhibitory proteins GPX4 and SLC7A11, as well as GCLC and NQO1. This resulted in an increase in the levels of cell lipid ROS and FeII, 4-HNE, which ultimately led to cell ferroptosis. Notably, knockdown of CYP2E1 resulted in an increase in DON-induced low levels of GPX4 and SLC7A11, a decrease in DON-induced high levels of lipid ROS, FeII and cell secreted 4-HNE, thus ameliorating cell ferroptosis. Moreover, the ferroptosis inhibitor ferrostatin-1 was observed to antagonise the cell growth inhibitory toxicity induced by DON exposure. This was achieved by blocking the increase in lipid ROS and FeII overload, which in turn reduced the extent of ferroptosis and increased IGF-1 protein expression. In conclusion, the present study demonstrated that CYP2E1 played a regulatory role in DON-induced ferroptosis in hepatocytes. Targeting ferroptosis may prove an effective strategy for alleviating DON-induced cell growth retardation toxicity. These findings provided a potential target and strategies to mitigate DON hepatotoxicity in the future.

6.
Neurophotonics ; 11(2): 024201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38090225

RESUMO

Significance: Efforts starting more than 20 years ago led to increasingly well performing genetically encoded voltage indicators (GEVIs) for optical imaging at wavelengths <600 nm. Although optical imaging in the >600 nm wavelength range has many advantages over shorter wavelength approaches for mesoscopic in vivo monitoring of neuronal activity in the mammalian brain, the availability and evaluation of well performing near-infrared GEVIs are still limited. Aim: Here, we characterized two recent near-infrared GEVIs, Archon1 and nirButterfly, to support interested tool users in selecting a suitable near-infrared GEVI for their specific research question requirements. Approach: We characterized side-by-side the brightness, sensitivity, and kinetics of both near-infrared GEVIs in a setting focused on population imaging. Results: We found that nirButterfly shows seven-fold higher brightness than Archon1 under the same conditions and faster kinetics than Archon1 for population imaging without cellular resolution. But Archon1 showed larger signals than nirButterfly. Conclusions: Neither GEVI characterized here surpasses in all three key parameters (brightness, kinetics, and sensitivity), so there is no unequivocal preference for one of the two. Our side-by-side characterization presented here provides new information for future in vitro and ex vivo experimental designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA