Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 395(1): 112194, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32712018

RESUMO

Inflammation plays a critical role in the development of atherosclerosis (AS), which has been identified as a major predisposing factor for stroke. Macrophages and VSMCs are associated with plaque formation and progression. Macrophages can dynamically change into two main functional phenotypes, namely M1 and M2, they can produce either pro-inflammatory or anti-inflammatory factors which may affect the outcome of inflammation. As a member of CTRPs family, CTRP9 has been reported play important protective roles in the cardiovascular system. However, whether CTRP9 can regulate macrophage activation status in inflammatory responses and have effect on VSMCs behaviors in co-culture system have not been fully investigated. In the present study, using peritoneal macrophages treated with CTRP9, we found that CTRP9 facilitated macrophages towards M1 phenotype, promoted TNF-α secretion and MMPs expression. CTRP9 showed synergistic effect with LPS in inducing M1 macrophages. In macrophages-VSMCs co-culture system, apoptosis and down-regulated proliferation of VSMCs were accelerated with CTRP9-treated macrophages. Then we attempted to explore the underlying molecular mechanisms of CTRP9 resulting in M1 activation. The c-Jun NH2-terminal kinases (JNK) are members of the mitogen activated protein kinases (MAPK) family, plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival. We found JNK expression was upregulated following CTRP9 stimulation, and inhibiting JNK phosphorylation level was associated with decreased expression of M1 markers and TNF-α concentration. Moreover, VSMCs apoptosis were ameliorated after inhibition of JNK. These results suggested that CTRP9 may promote macrophage towards M1 activation status through JNK signaling pathway activation.


Assuntos
Adiponectina/farmacologia , Apoptose/efeitos dos fármacos , Glicoproteínas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Adiponectina/metabolismo , Animais , Técnicas de Cocultura , Glicoproteínas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 523(1): 98-104, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31837806

RESUMO

The C1q tumor necrosis factor (TNF)-related proteins 9 (CTRP9), an adipocyte-derived cytokine, affects a number of physiological processes, including immune function and inflammation. We investigated whether CTRP9 affects the expression of inflammation-related genes in Raw 264.7 and peritoneal macrophages. The CTRP9-induced expression of iNOS increased in a time- and dose-dependent manner. LPS and CTRP9 promote the expression of iNOS jointly in Raw 264.7 and peritoneal macrophages. CTRP9 induced the phosphorylation of JAK2 and STAT3 in Raw 264.7 and peritoneal macrophages. VX509 (JAK2 inhibitor) reduced the CTRP9-induced iNOS protein production. In addition, the CTRP9-induced phosphorylation of JAK2 and STAT3 was dramatically reduced by VX509. Collectively, these results suggest that JAK2/STAT3 signaling is involved in the CTRP9-induced expression of iNOS.


Assuntos
Adiponectina/metabolismo , Glicoproteínas/metabolismo , Janus Quinase 2/metabolismo , Macrófagos Peritoneais/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
3.
Heliyon ; 9(8): e18731, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576216

RESUMO

Verticillium wilt (VW), Fusarium wilt (FW) and Root-knot nematode (RKN) are the main diseases affecting cotton production. However, many reported quantitative trait loci (QTLs) for cotton resistance have not been used for agricultural practices because of inconsistencies in the cotton genetic background. The integration of existing cotton genetic resources can facilitate the discovery of important genomic regions and candidate genes involved in disease resistance. Here, an improved and comprehensive meta-QTL analysis was conducted on 487 disease resistant QTLs from 31 studies in the last two decades. A consensus linkage map with genetic overall length of 3006.59 cM containing 8650 markers was constructed. A total of 28 Meta-QTLs (MQTLs) were discovered, among which nine MQTLs were identified as related to resistance to multiple diseases. Candidate genes were predicted based on public transcriptome data and enriched in pathways related to disease resistance. This study used a method based on the integration of Meta-QTL, known genes and transcriptomics to reveal major genomic regions and putative candidate genes for resistance to multiple diseases, providing a new basis for marker-assisted selection of high disease resistance in cotton breeding.

4.
J Inflamm Res ; 14: 1007-1017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790616

RESUMO

BACKGROUND: Clearance of apoptotic cells (ACs) by phagocytes (efferocytosis) suppresses post-apoptotic necrosis and alleviates inflammation. Defective efferocytosis induces diseases that include atherosclerosis and autoimmune diseases. C1q/TNF-related protein 9 (CTRP9), a novel adipokine, has been reported to protect against various cardiovascular disease; however, the effect of CTRP9 on efferocytosis has not been elucidated. METHODS: 1. The efferocytosis of macrophages incubated with ACs with or without CTRP9 treatment was detected by flow cytometry (FCM) and immunostaining. The unengulfed ACs of CTRP9-KO and wild-type (WT) mice after dexamethasone injection were detected by TUNEL assay. 2. As mitochondrial fission is important for promoting efferocytosis, the effect of CTRP9 on mitochondrial fission was measured by fission/fusion-related proteins (MFN2, DRP1, MFF, and OPA1) and visualized by staining with MitoTracker. 3. On account of metabolism insults in engulfed macrophages, we conducted a two-stage efferocytosis assay, and the protective effects of CTRP9 on metabolism were investigated by Western blot. RESULTS: CTRP9 significantly facilitated macrophage efferocytosis, and it promoted mitochondrial fission by increasing the expression of p-DRP1 (s616) and the translocation of DRP1 from the cytoplasm to the mitochondria. The p38/Jnk-MAPK pathway was activated after treatment with 1 µg/mL CTRP9. When we blocked the activation of MAPK signaling by SB203580 and SP600125, the mediated effect on p-DRP1 (s616) was reduced. Moreover, CTRP9 increased the levels of ABCA1, PPAR-y, HIF-1a and GLUT1, as well as the release of lactate in basal and engulfed macrophages, which revealed that the metabolism of macrophages was advanced. Apoptotic cell-conditioned media (ACCM) and ACs increased the expression of adiponectin receptor 1 (AdipoR1). Down-regulation of AdipoR1 by siRNA could abrogate the immunometabolism effects of CTRP9. CONCLUSION: CTRP9 promoted efferocytosis in macrophages via MAPK/drp1-mediated mitochondrial fission and AdipoR1-induced immunometabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA