Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 8496-8505, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571107

RESUMO

Flexibly wearable sensors are widely applied in health monitoring and personalized therapy. Multiple-node sensing is essential for mastering the health condition holistically. In this work, we report a multi-node wearable optical sensor (MNWOS) based on the cascade of microfiber Bragg gratings (µFBG), which features the reflective operation mode and ultra-compact size, facilitating the functional integration in a flexible substrate pad. The MNWOS can realize multipoint monitoring on physical variables, such as temperature and pressure, in both static and dynamic modes. Furthermore, the eccentric package configuration endows the MNWOS with the discernibility of bending direction in addition to the bending angle sensing. The multi-parameter sensing is realized by solving the sensing matrix that represents different sensitivity regarding the bending and temperature between FBGs. The MNWOS offers great prospect for the development of human-machine interfaces and medical and health detection.

2.
Opt Express ; 31(10): 15674-15681, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157662

RESUMO

Fiber-optic devices working in the visible and near-infrared windows are attracting attention due to the rapid development of biomedicine that involves optics. In this work, we have successfully realized the fabrication of near-infrared microfiber Bragg grating (NIR-µFBG), which was operated at the wavelength of 785 nm, by harnessing the fourth harmonic order of Bragg resonance. The NIR-µFBG provided the maximum sensitivity of axial tension and bending to 211 nm/N and 0.18 nm/deg, respectively. By conferring the considerably lower cross-sensitivity, such as response to temperature or ambient refractive index, the NIR-µFBG can be potentially implemented as the highly sensitive tensile force and curve sensor.

3.
Biosensors (Basel) ; 13(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504073

RESUMO

Detection of trace tumor markers in blood/serum is essential for the early screening and prognosis of cancer diseases, which requires high sensitivity and specificity of the assays and biosensors. A variety of label-free optical fiber-based biosensors has been developed and yielded great opportunities for Point-of-Care Testing (POCT) of cancer biomarkers. The fiber biosensor, however, suffers from a compromise between the responsivity and stability of the sensing signal, which would deteriorate the sensing performance. In addition, the sophistication of sensor preparation hinders the reproduction and scale-up fabrication. To address these issues, in this study, a straightforward lasso-shaped fiber laser biosensor was proposed for the specific determination of carcinoembryonic antigen (CEA)-related cell adhesion molecules 5 (CEACAM5) protein in serum. Due to the ultra-narrow linewidth of the laser, a very small variation of lasing signal caused by biomolecular bonding can be clearly distinguished via high-resolution spectral analysis. The limit of detection (LOD) of the proposed biosensor could reach 9.6 ng/mL according to the buffer test. The sensing capability was further validated by a human serum-based cancer diagnosis trial, enabling great potential for clinical use. The high reproduction of fabrication allowed the mass production of the sensor and extended its utility to a broader biosensing field.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Biomarcadores Tumorais , Fibras Ópticas , Neoplasias/diagnóstico , Lasers , Antígeno Carcinoembrionário , Proteínas Ligadas por GPI
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA