Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35027452

RESUMO

Alzheimer's disease (AD) is characterized by complex, multifactorial neuropathology, suggesting that small molecules targeting multiple neuropathological factors are likely required to successfully impact clinical progression. Acid sphingomyelinase (ASM) activation has been recognized as an important contributor to these neuropathological features in AD, leading to the concept of using ASM inhibitors for the treatment of this disorder. Here we report the identification of KARI 201, a direct ASM inhibitor evaluated for AD treatment. KARI 201 exhibits highly selective inhibition effects on ASM, with excellent pharmacokinetic properties, especially with regard to brain distribution. Unexpectedly, we found another role of KARI 201 as a ghrelin receptor agonist, which also has therapeutic potential for AD treatment. This dual role of KARI 201 in neurons efficiently rescued neuropathological features in AD mice, including amyloid beta deposition, autophagy dysfunction, neuroinflammation, synaptic loss, and decreased hippocampal neurogenesis and synaptic plasticity, leading to an improvement in memory function. Our data highlight the possibility of potential clinical application of KARI 201 as an innovative and multifaceted drug for AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Neuropatologia/métodos , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Memória , Camundongos , Plasticidade Neuronal , Neurônios/metabolismo , Receptores de Grelina/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo
2.
Mol Pharmacol ; 104(5): 214-229, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595967

RESUMO

Nonalcoholic steatohepatitis (NASH) is a severe liver metabolic disorder, however, there are still no effective and safe drugs for its treatment. Previous clinical trials used various therapeutic approaches to target individual pathologic mechanisms, but these approaches were unsuccessful because of the complex pathologic causes of NASH. Combinatory therapy in which two or more drugs are administered simultaneously to patients with NASH, however, carries the risk of side effects associated with each individual drug. To solve this problem, we identified gossypetin as an effective dual-targeting agent that activates AMP-activated protein kinase (AMPK) and decreases oxidative stress. Administration of gossypetin decreased hepatic steatosis, lobular inflammation and liver fibrosis in the liver tissue of mice with choline-deficient high-fat diet and methionine-choline deficient diet (MCD) diet-induced NASH. Gossypetin functioned directly as an antioxidant agent, decreasing hydrogen peroxide and palmitate-induced oxidative stress in the AML12 cells and liver tissue of MCD diet-fed mice without regulating the antioxidant response factors. In addition, gossypetin acted as a novel AMPK activator by binding to the allosteric drug and metabolite site, which stabilizes the activated structure of AMPK. Our findings demonstrate that gossypetin has the potential to serve as a novel therapeutic agent for nonalcoholic fatty liver disease /NASH. SIGNIFICANCE STATEMENT: This study demonstrates that gossypetin has preventive effect to progression of nonalcoholic steatohepatitis (NASH) as a novel AMP-activated protein kinase (AMPK) activator and antioxidants. Our findings indicate that simultaneous activation of AMPK and oxidative stress using gossypetin has the potential to serve as a novel therapeutic approach for nonalcoholic fatty liver disease /NASH patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Metionina/metabolismo , Metionina/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Proc Natl Acad Sci U S A ; 116(47): 23426-23436, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685616

RESUMO

As a central feature of neuroinflammation, microglial dysfunction has been increasingly considered a causative factor of neurodegeneration implicating an intertwined pathology with amyloidogenic proteins. Herein, we report the smallest synthetic molecule (N,N'-diacetyl-p-phenylenediamine [DAPPD]), simply composed of a benzene ring with 2 acetamide groups at the para position, known to date as a chemical reagent that is able to promote the phagocytic aptitude of microglia and subsequently ameliorate cognitive defects. Based on our mechanistic investigations in vitro and in vivo, 1) the capability of DAPPD to restore microglial phagocytosis is responsible for diminishing the accumulation of amyloid-ß (Aß) species and significantly improving cognitive function in the brains of 2 types of Alzheimer's disease (AD) transgenic mice, and 2) the rectification of microglial function by DAPPD is a result of its ability to suppress the expression of NLRP3 inflammasome-associated proteins through its impact on the NF-κB pathway. Overall, our in vitro and in vivo investigations on efficacies and molecular-level mechanisms demonstrate the ability of DAPPD to regulate microglial function, suppress neuroinflammation, foster cerebral Aß clearance, and attenuate cognitive deficits in AD transgenic mouse models. Discovery of such antineuroinflammatory compounds signifies the potential in discovering effective therapeutic molecules against AD-associated neurodegeneration.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Cognição/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fagocitose/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Anti-Inflamatórios/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Microglia/fisiologia , Estrutura Molecular , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/genética , Fenilenodiaminas/química , Fenilenodiaminas/uso terapêutico , Presenilina-1/genética , Memória Espacial/efeitos dos fármacos
4.
Pharm Biol ; 60(1): 2266-2275, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36412560

RESUMO

CONTEXT: Zeaxanthin is a yellow­coloured dietary carotenoid widely recognized as an essential component of the macula. It exerts blue light filtering and antioxidant activities, offering eye health and vision benefits. OBJECTIVE: This study explores the oral absorption and systemic disposition of zeaxanthin from biopharmaceutical and pharmacokinetic perspectives. MATERIALS AND METHODS: In vivo intravenous (5 and 10 mg/kg) and intraportal (5 mg/kg) pharmacokinetic studies were performed to determine intrinsic tissue­blood partition coefficient, elimination pathway, and hepatic clearance, of zeaxanthin in rats. Moreover, in vitro physicochemical property test, in situ closed loop study, in vivo oral pharmacokinetic study (20 and 100 mg/kg), and in vivo lymphatic absorption study (100 mg/kg) were conducted to investigate the gut absorption properties of zeaxanthin and assess the effects of several lipids on the lymphatic absorption of zeaxanthin in rats. RESULTS: Zeaxanthin exhibited poor solubility (≤144 ng/mL) and stability (6.0-76.9% of the initial amount remained at 24 h) in simulated gut luminal fluids. Gut absorption of zeaxanthin occurred primarily in the duodenum, but the major fraction (≥84.7%) of the dose remained unabsorbed across the entire gut tract. Considerable fractions of intravenous zeaxanthin accumulated in the liver, lung, and spleen (21.3, 11.7, and 2.0%, respectively). It was found that the liver is the major eliminating organ of zeaxanthin, accounting for 53.5-90.1% of the total clearance process (hepatic extraction ratio of 0.623). DISCUSSION AND CONCLUSIONS: To our knowledge, this is the first systematic study to report factors that determine the oral bioavailability and systemic clearance of zeaxanthin.


Assuntos
Antioxidantes , Carotenoides , Animais , Ratos , Zeaxantinas/metabolismo , Disponibilidade Biológica , Carotenoides/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo
5.
Mol Pharm ; 18(1): 101-112, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33241681

RESUMO

We report a prodrug, Glu-DAPPD, to overcome the shortcomings of an anti-neuroinflammatory molecule, N,N'-diacetyl-p-phenylenediamine (DAPPD), in biological applicability for potential therapeutic applications. We suspect that Glu-DAPPD can release DAPPD through endogenous enzymatic bioconversion. Consequently, Glu-DAPPD exhibits in vivo efficacies in alleviating neuroinflammation, reducing amyloid-ß aggregate accumulation, and improving cognitive function in Alzheimer's disease transgenic mice. Our studies demonstrate that the prodrug approach is suitable and effective toward developing drug candidates against neurodegeneration.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Inflamação/tratamento farmacológico , Neurônios/efeitos dos fármacos , Pró-Fármacos/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/metabolismo , Fenilenodiaminas/farmacologia
6.
Xenobiotica ; 51(10): 1087-1094, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34338601

RESUMO

We explored the inhibitory effect of ginsenoside compound K (CK), 20(S)-protopanaxadiol (PPD), and 20(S)-protopanaxatriol (PPT) on six uridine 5'-diphospho-glucuronosyltransferase (UGT) enzyme (UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) activities in human liver microsomes (HLMs) and 10 UGT enzyme (UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B10, 2B15, and 2B17) activities in recombinant UGT isoforms.PPD was a potent inhibitor of UGT1A3 activity with half-maximal inhibitory concentration values of 5.62 and 3.38 µM in HLMs and recombinant UGT1A3, respectively. UGT1A3 inhibition by CK and PPD was competitive with inhibitory constant (Ki) values of 17.4 and 1.21 µM, respectively, and inhibition by PPT was non-competitive with a Ki value of 8.07 µM in HLMs. PPD exhibited more than 3.4-fold selectivity for UGT1A3 inhibition compared with other UGT isoforms inhibition, while CK and PPT showed more than 2.16- and 2.21-fold selectivity, respectively.PPD did not significantly increase the mRNA expression of UGT1A1, 1A3, 1A4, 1A9, and 2B7 in hepatocytes.Given the low plasma concentrations of PPD in healthy human subjects and the absence of induction potential on UGT isoforms, we conclude that PPD cause no pharmacokinetic interactions with other co-administered drugs metabolised by UGT1A3.


Assuntos
Glucuronosiltransferase , Microssomos Hepáticos , Ginsenosídeos , Humanos , Sapogeninas , Uridina
7.
J Toxicol Environ Health A ; 84(20): 821-835, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34187333

RESUMO

The aim of this study was to determine pharmacokinetics of α-amanitin, a toxic bicyclic octapeptide isolated from the poisonous mushrooms, following intravenous (iv) or oral (po) administration in mice using a newly developed and validated liquid chromatography-high resolution mass spectrometry. The iv injected α-amanitin disappeared rapidly from the plasma with high a clearance rate (26.9-30.4 ml/min/kg) at 0.1, 0.2, or 0.4 mg/kg doses, which was consistent with a rapid and a major excretion of α-amanitin via the renal route (32.6%). After the po administration of α-amanitin at doses of 2, 5, or 10 mg/kg to mice, the absolute bioavailability of α-amanitin was 3.5-4.8%. Due to this low bioavailability, 72.5% of the po administered α-amanitin was recovered from the feces. When α-amanitin is administered po, the tissue to plasma area under the curve ratio was higher in stomach > large intestine > small intestine > lung ~ kidneys > liver but not detected in brain, heart, and spleen. The high distribution of α-amanitin to intestine, kidneys, and liver is in agreement with the previously reported major intoxicated organs following acute α-amanitin exposure. In addition, α-amanitin weakly or negligibly inhibited cytochrome P450 and 5'-diphospho-glucuronosyltransferase enzymes activity in human liver microsomes as well as major drug transport functions in mammalian cells overexpressing transporters. Data suggested remote drug interaction potential may be associated with α-amanitin exposure.


Assuntos
Alfa-Amanitina/farmacocinética , Venenos/farmacocinética , Animais , Cromatografia Líquida , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Fígado/enzimologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos ICR , Microssomos/metabolismo
8.
Pharmacol Res ; 161: 105146, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32814173

RESUMO

Neovascular age-related macular degeneration (nAMD) is a common cause of irreversible vision loss in the elderly. Anti-vascular endothelial growth factor has been effective in treating pathological ocular neovascularization, but it has limitations including the need for repeated intraocular injections for the maintenance of therapeutic effects in most patients and poor or non-response to this agent in some patients. in vitro cellular studies were conducted using retinal pigment epithelial cell lines (ARPE-19 and hTERT-RPE1), human umbilical vein endothelial cells (HUVECs), and human umbilical vein smooth muscle cells (HUVSMCs). in vivo efficacy of ilimaquinone (IQ) was tested in laser-induced choroidal neovascularization mouse and rabbit models. Tissue distribution study was performed in male C57BL6/J mice. IQ, 4,9-friedodrimane-type sesquiterpenoid isolated from the marine sponge, repressed the expression of angiogenic/inflammatory factors and restored the expression of E-cadherin in retinal pigment epithelial cells by inhibiting the Wnt/ß-catenin pathway. In addition, it selectively inhibited proliferation and tube formation of HUVECs by activating the p53 pathway. Topical and intraperitoneal administration of IQ significantly reduced choroidal neovascularization in rabbits and mice with laser-induced choroidal neovascularization. Notably, IQ by the oral route of exposure was highly permeable to the eyes and suppressed abnormal vascular leakage by downregulation of ß-catenin and stabilization of p53 in vivo. Our findings demonstrate that IQ functions through regulation of p53 and Wnt/ß-catenin pathways with conceivable advantages over existing cytokine-targeted anti-angiogenic therapies.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização de Coroide/prevenção & controle , Degeneração Macular/prevenção & controle , Quinonas/farmacologia , Neovascularização Retiniana/prevenção & controle , Vasos Retinianos/efeitos dos fármacos , Sesquiterpenos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Linhagem Celular , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Camundongos Endogâmicos C57BL , Coelhos , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia
9.
J Biochem Mol Toxicol ; 34(4): e22459, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32003934

RESUMO

We aimed to investigate the intestinal permeability and interaction of cyazofamid with clinically important transporters. The intestinal permeability of cyazofamid was low (0.21 ± 0.02 cm/s), and it is a substrate for P-glycoprotein (P-gp) with a Km value of 83.1 µM, indicated that P-gp in the intestinal lumen could serve as a protective barrier to this fungicide. Cyazofamid was not a substrate for clinically important transporters. However, cyazofamid inhibited organic cation transporter 3 (OCT3) and OAT1, with IC50 values of 1.54 and 17.3 µM, respectively, but could not result in OAT3- and OAT1-mediated cyazofamid-drug interactions because of its low plasma concentration. Cyazofamid poorly interacted with OCT1, OCT2, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, P-gp, breast cancer resistance-related protein, and multidrug resistance-related protein 2. In conclusion, the interactions of cyazofamid with human drug transporters have been evaluated as part of the safety assessment. Given its low intestinal permeability and poor interaction with human drug transporters, cyazofamid might not cause serious toxicity or adverse events.


Assuntos
Permeabilidade da Membrana Celular , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Imidazóis/metabolismo , Imidazóis/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Células CACO-2 , Interações Medicamentosas , Fungicidas Industriais/farmacocinética , Células HEK293 , Humanos , Imidazóis/farmacocinética , Concentração Inibidora 50 , Intestinos/fisiologia , Células LLC-PK1 , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Sulfonamidas/farmacocinética , Suínos
10.
Biopharm Drug Dispos ; 41(7): 295-306, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32557706

RESUMO

Ginseng (Panax ginseng Meyer) is a popular traditional herbal medicine used worldwide. Patients often take ginseng preparations with other medicines where the ginseng dose could exceed the recommended dose during long-term administration. However, ginseng-drug interactions at high doses of ginseng are poorly understood. This study showed the possibility of herb-drug interactions between the Korean red ginseng (KRG) extract and cytochrome P450 (CYP) substrates in higher administration in mice. The CYP activities were determined in vivo after oral administration of KRG extract doses of 0.5, 1.0, and 2.0 g/kg for 2 or 4 weeks by monitoring the concentration of five CYP substrates/metabolites in the blood. The area under the curve for OH-midazolam/midazolam catalysed by CYP3A was increased significantly by the administration of 2.0 g/kg KRG extract for 2 and 4 weeks. CYP3A-catalysed midazolam 1'-hydroxylation also increased significantly in a dose- and time-dependent manner in the S9 fraction of mouse liver which was not related to induction by transcription. Whereas CYP2D-catalysed dextromethorphan O-deethylation decreased in a dose- and time-dependent manner in vivo. In conclusion, interactions were observed between KRG extract and CYP2D and CYP3A substrates at subchronic-high doses of KRG administration in mice.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Interações Ervas-Drogas , Panax/química , Extratos Vegetais/farmacologia , Administração Oral , Animais , Área Sob a Curva , Citocromo P-450 CYP3A/metabolismo , Família 2 do Citocromo P450/metabolismo , Dextrometorfano/farmacocinética , Relação Dose-Resposta a Droga , Masculino , Camundongos , Midazolam/farmacocinética , Extratos Vegetais/administração & dosagem , Fatores de Tempo
11.
Molecules ; 25(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050066

RESUMO

AB-FUBINACA, a synthetic indazole carboxamide cannabinoid, has been used worldwide as a new psychoactive substance. Because drug abusers take various drugs concomitantly, it is necessary to explore potential AB-FUBINACA-induced drug-drug interactions caused by modulation of drug-metabolizing enzymes and transporters. In this study, the inhibitory effects of AB-FUBINACA on eight major human cytochrome P450s (CYPs) and six uridine 5'-diphospho-glucuronosyltransferases (UGTs) of human liver microsomes, and on eight clinically important transport activities including organic cation transporters (OCT)1 and OCT2, organic anion transporters (OAT)1 and OAT3, organic anion transporting polypeptide transporters (OATP)1B1 and OATP1B3, P-glycoprotein, and breast cancer resistance protein (BCRP) in transporter-overexpressing cells were investigated. AB-FUBINACA inhibited CYP2B6-mediated bupropion hydroxylation via mixed inhibition with Ki value of 15.0 µM and competitively inhibited CYP2C8-catalyzed amodiaquine N-de-ethylation, CYP2C9-catalyzed diclofenac 4'-hydroxylation, CYP2C19-catalyzed [S]-mephenytoin 4'-hydroxylation, and CYP2D6-catalyzed bufuralol 1'-hydroxylation with Ki values of 19.9, 13.1, 6.3, and 20.8 µM, respectively. AB-FUBINACA inhibited OCT2-mediated MPP+ uptake via mixed inhibition (Ki, 54.2 µM) and competitively inhibited OATP1B1-mediated estrone-3-sulfate uptake (Ki, 94.4 µM). However, AB-FUBINACA did not significantly inhibit CYP1A2, CYP2A6, CYP3A4, UGT1A1, UGT1A3, UGT1A4, UGT1A6, or UGT2B7 enzyme activities at concentrations up to 100 µM. AB-FUBINACA did not significantly inhibit the transport activities of OCT1, OAT1/3, OATP1B3, P-glycoprotein, or BCRP at concentrations up to 250 µM. As the pharmacokinetics of AB-FUBINACA in humans and animals remain unknown, it is necessary to clinically evaluate potential in vivo pharmacokinetic drug-drug interactions induced by AB-FUBINACA-mediated inhibition of CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, OCT2, and OATP1B1 activities.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Indazóis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Difosfato de Uridina/metabolismo , Canabinoides/metabolismo , Linhagem Celular , Inibidores das Enzimas do Citocromo P-450/metabolismo , Interações Medicamentosas/fisiologia , Células HEK293 , Humanos , Microssomos Hepáticos/metabolismo
12.
Molecules ; 25(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023909

RESUMO

The purpose of this study was to investigate the herb-drug interactions involving red ginseng extract (RGE) or ginsenoside Rc with valsartan, a substrate for organic anion transporting polypeptide (OATP/Oatp) transporters. In HEK293 cells overexpressing drug transporters, the protopanaxadiol (PPD)-type ginsenosides- Rb1, Rb2, Rc, Rd, Rg3, compound K, and Rh2-inhibited human OATP1B1 and OATP1B3 transporters (IC50 values of 7.99-68.2 µM for OATP1B1; 1.36-30.8 µM for OATP1B3), suggesting the herb-drug interaction of PPD-type ginsenosides involving OATPs. Protopanaxatriol (PPT)-type ginsenosides-Re, Rg1, and Rh1-did not inhibit OATP1B1 and OATP1B3 and all ginsenosides tested didn't inhibit OCT and OAT transporters. However, in rats, neither RGE nor Rc, a potent OATP inhibitor among PPD-type ginsenoside, changed in vivo pharmacokinetics of valsartan following repeated oral administration of RGE (1.5 g/kg/day for 7 days) or repeated intravenous injection of Rc (3 mg/kg for 5 days). The lack of in vivo herb-drug interaction between orally administered RGE and valsartan could be attributed to the low plasma concentration of PPD-type ginsenosides (5.3-48.4 nM). Even high plasma concentration of Rc did not effectively alter the pharmacokinetics of valsartan because of high protein binding and the limited liver distribution of Rc. The results, in conclusion, would provide useful information for herb-drug interaction between RGE or PPD-type ginsenosides and Oatp substrate drugs.


Assuntos
Ginsenosídeos/administração & dosagem , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Valsartana/administração & dosagem , Valsartana/farmacocinética , Administração Oral , Animais , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/farmacologia , Células HEK293 , Interações Ervas-Drogas , Humanos , Masculino , Ratos
13.
Drug Metab Dispos ; 47(12): 1372-1379, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31578207

RESUMO

Ginseng is known to have inhibitory effects on UGT1A9 activity. However, little is known about the inhibitory effects of ginsenosides, the major active compounds in ginseng, on UGT1A9 activity. In vitro investigation of UGT1A9 inhibition by ginsenosides was carried out using human liver microsomes (HLMs). Among 10 ginsenosides, ginsenoside Rc was the strongest inhibitor of UGT1A9-mediated mycophenolic acid glucuronidase activity. Further inhibition kinetic studies using HLMs suggested that ginsenoside Rc competitively and noncompetitively inhibited UGT1A9-mediated propofol and mycophenolic acid glucuronidation activities, with K i values of 2.83 and 3.31 µM, respectively. Next, to investigate whether the inhibitory effect of ginsenoside Rc is specific to the UGT1A9 isoform, we studied the inhibitory potency of ginsenoside Rc on nine human uridine diphospho-glucuronosyltransferase (UGT) activities using recombinant human UGT isoforms. Ginsenoside Rc exhibited a 12.9-fold selectivity (which was similar to niflumic acid at 12.5-fold) for UGT1A9 inhibition. Ginsenoside Rc at 50 µM also inhibited none of the other UGT isoform-specific activities above 12.0%, except for UGT1A9 (>91.5%) in HLMs, indicating that ginsenoside Rc might be used as a selective UGT1A9 inhibitor in reaction phenotyping studies of new chemical entities. Considering lower plasma concentrations (0.01 µM) of ginsenoside Rc in healthy subjects and no induction potential on UGT isoforms, ginsenoside Rc does not cause pharmacokinetic drug interactions with other coadministered drugs metabolized by UGT1A9. SIGNIFICANCE STATEMENT: Ginsenoside Rc selectively inhibited UGT1A9-mediated propofol and mycophenolic acid glucuronidation activities in human liver microsomes and recombinant uridine diphospho-glucuronosyltransferase (UGT) isoforms. It exhibited a 12.9-fold selectivity for UGT1A9 inhibition. Therefore, ginsenoside Rc might be used as a selective UGT1A9 inhibitor in reaction phenotyping studies of new chemical entities, such as niflumic acid.


Assuntos
Inibidores Enzimáticos/farmacologia , Ginsenosídeos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Inibidores Enzimáticos/química , Ginsenosídeos/química , Glucuronídeos/metabolismo , Humanos , Técnicas In Vitro , Isoenzimas , Cinética , Microssomos Hepáticos/enzimologia , Estrutura Molecular , Ácido Micofenólico/farmacologia , Propofol/farmacologia , UDP-Glucuronosiltransferase 1A
14.
Molecules ; 24(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083444

RESUMO

Glycyrrhizae Radix is widely used as herbal medicine and is effective against inflammation, various cancers, and digestive disorders. We aimed to develop a sensitive and simultaneous analytical method for detecting glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin, the four marker components of Glycyrrhizae Radix extract (GRE), in rat plasma using liquid chromatography-tandem mass spectrometry and to apply this analytical method to pharmacokinetic studies. Retention times for glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin were 7.8 min, 4.1 min, 3.1 min, and 2.0 min, respectively, suggesting that the four analytes were well separated without any interfering peaks around the peak elution time. The lower limit of quantitation was 2 ng/mL for glycyrrhizin and 0.2 ng/mL for isoliquiritigenin, liquiritigenin, and liquiritin; the inter- and intra-day accuracy, precision, and stability were less than 15%. Plasma concentrations of glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin were quantified for 24 h after a single oral administration of 1 g/kg GRE to four rats. Among the four components, plasma concentration of glycyrrhizin was the highest and exhibited a long half-life (23.1 ± 15.5 h). Interestingly, plasma concentrations of isoliquiritigenin and liquiritigenin were restored to the initial concentration at 4-10 h after the GRE administration, as evidenced by liquiritin biotransformation into isoliquiritigenin and liquiritigenin, catalyzed by fecal lysate and gut wall enzymes. In conclusion, our analytical method developed for detecting glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin could be successfully applied to investigate their pharmacokinetic properties in rats and would be useful for conducting further studies on the efficacy, toxicity, and biopharmaceutics of GREs and their marker components.


Assuntos
Chalconas/sangue , Flavanonas/sangue , Glucosídeos/sangue , Ácido Glicirrízico/sangue , Administração Oral , Animais , Chalconas/farmacocinética , Cromatografia Líquida , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Flavanonas/farmacocinética , Glucosídeos/farmacocinética , Ácido Glicirrízico/farmacocinética , Masculino , Extratos Vegetais/sangue , Extratos Vegetais/farmacocinética , Controle de Qualidade , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
15.
Molecules ; 24(14)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323835

RESUMO

We aimed to develop a sensitive method for detecting 13 ginsenosides using liquid chromatography-tandem mass spectrometry and to apply this method to pharmacokinetic studies in human following repeated oral administration of red ginseng extract. The chromatograms of Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) in human plasma were well separated. The calibration curve range for 13 ginsenosides was 0.5-200 ng/mL and the lower limit of quantitation was 0.5 ng/mL for all ginsenosides. The inter- and intra-day accuracy, precision, and stability were less than 15%. Among the 13 ginsenosides tested, nine ginsenosides (Rb1, Rb2, Rc, Rd, Rg3, CK, Rh2, PPD, and PPT) were detected in the human plasma samples. The plasma concentrations of Rb1, Rb2, Rc, Rd, and Rg3 were correlated with the content in red ginseng extract; however, CK, Rh2, PPD, and PPT were detected although they are not present in red ginseng extract, suggesting the formation of these ginsenosides through the human metabolism. In conclusion, our analytical method could be effectively used to evaluate pharmacokinetic properties of ginsenosides, which would be useful for establishing the pharmacokinetic-pharmacodymic relationship of ginsenosides as well as ginsenoside metabolism in humans.


Assuntos
Ginsenosídeos/sangue , Ginsenosídeos/química , Panax/química , Extratos Vegetais/sangue , Extratos Vegetais/química , Ginsenosídeos/farmacocinética , Humanos , Redes e Vias Metabólicas , Estrutura Molecular , Extratos Vegetais/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
16.
Molecules ; 24(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430908

RESUMO

APINACA (known as AKB48, N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide), an indazole carboxamide synthetic cannabinoid, has been used worldwide as a new psychoactive substance. Drug abusers take various drugs concomitantly, and therefore, it is necessary to characterize the potential of APINACA-induced drug-drug interactions due to the modulation of drug-metabolizing enzymes and transporters. In this study, the inhibitory effects of APINACA on eight major human cytochrome P450s (CYPs) and six uridine 5'-diphospho-glucuronosyltransferases (UGTs) in human liver microsomes, as well as on the transport activities of six solute carrier transporters and two efflux transporters in transporter-overexpressed cells, were investigated. APINACA exhibited time-dependent inhibition of CYP3A4-mediated midazolam 1'-hydroxylation (Ki, 4.5 µM; kinact, 0.04686 min-1) and noncompetitive inhibition of UGT1A9-mediated mycophenolic acid glucuronidation (Ki, 5.9 µM). APINACA did not significantly inhibit the CYPs 1A2, 2A6, 2B6, 2C8/9/19, or 2D6 or the UGTs 1A1, 1A3, 1A4, 1A6, or 2B7 at concentrations up to 100 µM. APINACA did not significantly inhibit the transport activities of organic anion transporter (OAT)1, OAT3, organic anion transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)1, OCT2, P-glycoprotein, or breast cancer resistance protein at concentrations up to 250 µM. These data suggest that APINACA can cause drug interactions in the clinic via the inhibition of CYP3A4 or UGT1A9 activities.


Assuntos
Transporte Biológico/efeitos dos fármacos , Canabinoides/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Linhagem Celular , Interações Medicamentosas , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
17.
Pharm Res ; 35(12): 236, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30324316

RESUMO

PURPOSE: To build a physiologically based pharmacokinetic (PBPK) model for fimasartan, amlodipine, and hydrochlorothiazide, and to investigate the drug-drug interaction (DDI) potentials. METHODS: The PBPK model of each drug was developed using Simcyp software (Version 15.0), based on the information obtained from literature sources and in vitro studies. The predictive performance of the model was assessed by comparing the predicted PK profiles and parameters with the observed data collected from healthy subjects after multiple oral doses of fimasartan, amlodipine, and hydrochlorothiazide. The DDI potentials after co-administration of three drugs were simulated using the final model. RESULTS: The predicted-to-observed ratios of all the pharmacokinetic parameters met the acceptance criterion. The PBPK model predicted no significant DDI when fimasartan was co-administered with amlodipine or hydrochlorothiazide, which is consistent with the observed clinical data. In the simulation of DDI at steady-state after co-administration of three drugs, the model predicted that fimasartan exposure would be increased by ~24.5%, while no changes were expected for the exposures of amlodipine and hydrochlorothiazide. CONCLUSIONS: The developed PBPK model adequately predicted the pharmacokinetics of fimasartan, amlodipine, and hydrochlorothiazide, suggesting that the model can be used to further investigate the DDI potential of each drug.


Assuntos
Anlodipino/farmacocinética , Anti-Hipertensivos/farmacocinética , Compostos de Bifenilo/farmacocinética , Hidroclorotiazida/farmacocinética , Pirimidinas/farmacocinética , Tetrazóis/farmacocinética , Anlodipino/farmacologia , Anti-Hipertensivos/farmacologia , Compostos de Bifenilo/farmacologia , Simulação por Computador , Interações Medicamentosas , Humanos , Hidroclorotiazida/farmacologia , Modelos Biológicos , Pirimidinas/farmacologia , Software , Tetrazóis/farmacologia
18.
Int J Mol Sci ; 19(4)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642532

RESUMO

The in vivo relevance of ursodeoxycholate (UDCA) treatment (100 mg/kg/day, per oral tid for 5 days before cholestasis induction followed by the same dosing for 5 days) on hepatic function was investigated in rats with 17α-ethinylestradiol (EE, 10 mg/kg, subcutaneous for 5 days)-induced experimental cholestasis. The bile flow rate and the expression level of hepatic multidrug resistance-associated protein 2 (Mrp 2) that were decreased in cholestasis were restored after UDCA treatment. Consistent with this, the biliary excretion clearance (CLexc,bile) of a representative Mrp2 substrate-methotrexate (MTX)-was decreased in cholestatic rats but was restored after UDCA treatment. Consequently, the plasma concentrations of MTX, which were increased by cholestasis, were decreased to control levels by UDCA treatment. Thus, the restoration of CLexc,bile appears to be associated with the increase in Mrp2 expression on the canalicular membrane by UDCA treatment followed by Mrp2-mediated biliary excretion of MTX. On the other hand, the hepatic uptake clearance (CLup,liver) of MTX was unchanged by cholestasis or UDCA treatment, suggestive of the absence of any association between the uptake process and the overall biliary excretion of MTX. Since UDCA has been known to induce the expression of canalicular MRP2 in humans, UDCA treatment might be effective in humans to maintain or accelerate the hepatobiliary elimination of xenobiotics or metabolic conjugates that are MRP2 substrates.


Assuntos
Ácidos e Sais Biliares/química , Colestase/prevenção & controle , Etinilestradiol/efeitos adversos , Metotrexato/sangue , Ácido Ursodesoxicólico/administração & dosagem , Transportadores de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Animais , Colestase/sangue , Colestase/induzido quimicamente , Colestase/metabolismo , Regulação para Baixo , Esquema de Medicação , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Ratos , Resultado do Tratamento , Ácido Ursodesoxicólico/farmacologia
19.
Molecules ; 23(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424502

RESUMO

We aimed to investigate the effects of red ginseng extract (RGE) on the expression of efflux transporters and to study the pharmacokinetics of representative substrate. For this, rats received single or repeated administration of RGE (1.5 g/kg/day) for 1 and 2 weeks via oral gavage. mRNA and protein levels of multidrug resistance-associated protein2 (Mrp2), bile salt export pump (Bsep), and P-glycoprotein (P-gp) in the rat liver were measured via real-time polymerase chain reaction and Western blot analysis. Ginsenosides concentrations from the rat plasma were also monitored using a liquid chromatography⁻tandem mass spectrometry (LC⁻MS/MS) system. Plasma concentrations of ginsenoside Rb1, Rb2, Rc, and Rd following repeated administration of RGE for 1 and 2 weeks were comparable but significantly higher than those after single administration of RGE. These dosing regimens did not induce significant biochemical abnormalities in the liver, kidneys, and lipid homeostasis. In the RGE repeated oral administration groups, the mRNA and protein levels of Mrp2 significantly decreased. Accordingly, we investigated the changes in the pharmacokinetics of methotrexate, a probe substrate for Mrp2, following intravenous administration of 3 mg/kg methotrexate to rats in the RGE 1-week repeated oral administration group, compared to that in the control group. Biliary excretion, but not urinary excretion, of methotrexate decreased in the RGE repeated administration group, compared to that in the control group. Consequently, the plasma concentrations of methotrexate slightly increased in the RGE repeated administration group. In conclusion, repeated administration of RGE for 1 week resulted in a decrease in Mrp2 expression without inducing significant liver or kidney damage. Pharmacokinetic herb⁻drug interaction between RGE and methotrexate might occur owing to the decrease in the mRNA and protein levels of Mrp2.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Metotrexato/farmacocinética , Panax/química , Extratos Vegetais/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Relação Dose-Resposta a Droga , Interações Medicamentosas , Monitoramento de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/administração & dosagem , Ginsenosídeos/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Testes de Função Renal , Fígado/efeitos dos fármacos , Fígado/metabolismo , Testes de Função Hepática , Masculino , Metotrexato/administração & dosagem , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos , Fatores de Tempo
20.
Mar Drugs ; 15(9)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862650

RESUMO

We aimed to investigate the pharmacokinetics and the underlying mechanisms of the intestinal absorption, distribution, metabolism, and excretion of Jaspine B in rats. The oral bioavailability of Jaspine B was 6.2%, but it decreased to 1.6% in bile-depleted rats and increased to 41.2% (normal) and 23.5% (bile-depleted) with taurocholate supplementation (60 mg/kg). Consistent with the increased absorption in the presence of bile salts, rat intestinal permeability of Jaspine B also increased in the presence of 10 mM taurocholate or 20% bile. Further studies demonstrated that the enhanced intestinal permeability with bile salts was due to increased lipophilicity and decreased membrane integrity. Jaspine B was designated as a highly tissue-distributed compound, because it showed large tissue to plasma ratios in the brain, kidney, heart, and spleen. Moreover, the recovery of Jaspine B from the feces and urine after an intravenous administration was about 6.3%, suggesting a substantial metabolism of Jaspine B. Consistent with this observation, 80% of the administered Jaspine B was degraded after 1 h incubation with rat liver microsomes. In conclusion, the facilitated intestinal permeability in the presence of bile salts could significantly increase the bioavailability of Jaspine B and could lead to the development of oral formulations of Jaspine B with bile salts. Moreover, the highly distributed features of Jaspine B in the brain, kidney, heart, and spleen should be carefully considered in the therapeutic effect and toxicity of this compound.


Assuntos
Ácidos e Sais Biliares/metabolismo , Absorção Intestinal/efeitos dos fármacos , Esfingosina/análogos & derivados , Administração Oral , Animais , Fezes/química , Masculino , Microssomos Hepáticos , Ratos , Esfingosina/farmacocinética , Urina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA