Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37514519

RESUMO

The integrity of oil well cement sheaths is closely related to the long-term production safety of oil and gas wells. The primary material used to form a cement sheath is brittle. In order to reduce the brittleness of oil well cement and improve its flexibility and resistance to stress damage, nano-silica was used to modify polymer elastic particles, and their properties were analyzed. The influence of the modified polymer particles on the properties of oil well cement-based composite materials was studied, and the microstructure of the polymer particle cement sample was analyzed. The results showed that nano-silica effectively encapsulates polymer particles, improves their hydrophilicity, and achieves a maximum temperature resistance of 415 °C. The effect of the modified polymer particles on the compressive strength of cement sample is reduced. Polymer particles with different dosages can effectively reduce the elastic modulus of cement paste, improve the deformation and elasticity of cement paste, and enhance the toughness of cement paste. Microstructural analysis showed that the polymer particles are embedded in the hydration products, which is the main reason for the improvement in the elasticity of cement paste. At the same time, polymer particle cement slurry can ensure the integrity of the cement sample after it is impacted, which helps to improve the ability of oil well cement-based composite materials to resist stress damage underground.

2.
Materials (Basel) ; 15(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363392

RESUMO

This paper describes the influence of the transannular π-π interaction in controlling the carrier transport in molecular wires by employing the STM break junction technique. Five pentaphenylene-based molecular wires that contained [2.2]paracyclophane-1,9-dienes (PCD) as the building block were prepared as model compounds. Functional substituents with different electronic properties, ranging from strong acceptors to strong donors, were attached to the top parallel aromatic ring and used as a gate. It was found that the carrier transport features of these molecular wires, such as single-molecule conductance and a charge-tunneling barrier, can be systematically controlled through the transannular π-π interaction.

3.
Materials (Basel) ; 15(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955192

RESUMO

Oil-well cement-based materials have inherent brittleness; therefore, they cannot be directly used to seal oil and gas wells for a long time. To improve the elasticity of oil-well cement-based composites, a flexible epoxy resin system was developed. The flexibility, TG, and SEM of the cured resin system were evaluated. At the same time, the resin was added to oil-well cement-based materials to improve its elasticity. The compressive strength and elastic modulus of resin cement stone were tested, and the microstructure was analyzed by XRD, TG, and SEM/EDS. The results showed that the structure of the cured resin is compact, the thermal decomposition temperature is 243.9 °C, and it can recover its original shape after compression. At the curing age of 28 days, the compressive strength of cement-based composites containing 30% resin decreased by 26.7%, while the elastic modulus significantly decreased by 63.2%, and the elasticity of cement-based composites was significantly improved. The formation of hydration products (e.g., calcium silicate hydrate, and calcium hydroxide) in the resin cement slurry is obviously lower than that of pure cement, which is the reason for the decrease in compressive strength. The flexible structure of polymer particles and polymer film formed by epoxy resin is distributed inside the cement stone, which significantly improves the elasticity of oil-well cement-based composites. The results of this paper are helpful for the design of elastic cement slurry systems.

4.
ACS Omega ; 6(27): 17136-17148, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278101

RESUMO

The application of fiber in the completion fluid can improve the rheological properties of the completion fluid and the plugging quality of the production layer by the completion fluid and reduce the damage of the filtrate to the reservoir formation. However, there are few studies on the influence of fibers on the rheological properties of completion fluids and the flow behavior in pores. In this paper, plant fiber, mineral fiber, and synthetic fiber are discussed. Carbon fiber, bamboo fiber, polypropylene fiber, and polyester fiber are selected as research objects. The dependence of the rheological property of polymer solution on fiber type, fiber concentration, temperature, and shear rate is evaluated. The evaluation is carried out by observing the microscopic state of the fiber through a microscope and a scanning electron microscope, testing the rheological property parameters of the fiber with an OFITE 900 rheological tester, and fitting with the Herschel-Bulkley model. The results show that polypropylene fiber and carbon fiber have the best dispersion in polymer solution. The higher the fiber content, the greater the influence of fiber on the rheological properties of the solution. Compared with the other three fibers, carbon fiber has the greatest influence on the rheological properties of polymer solution. When the temperature is lower than 70 °C, the influence of the fiber on the rheological properties of the solution is not affected by the temperature. When the temperature exceeds 70 °C, the carbon fiber and polypropylene fiber are affected by the temperature, and the viscosity of the polymer solution is increased. The flow behavior of fiber suspensions in pores varies with the flow factor n. Carbon fiber suspensions are most conducive to the transition of polymer solution to plate laminar flow, which can improve the bearing capacity of plugging materials.

5.
ACS Omega ; 5(15): 8483-8495, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32337409

RESUMO

Exploring deep and ultradeep wells has rapidly become more significant to meet the global demand for oil and gas. The study of rheological and filtration-loss properties is essential to designing drilling muds and determining their performance under operational conditions. Rheological and filtration-loss properties of drilling muds were found to have a negative impact when exposed to elevated temperatures in the wells. In this study, an amphoteric polymer (abbreviated to PEX) was synthesized and characterized using a combination of analyses: FTIR, SEM, 13CNMR, and TGA. The synthesized PEX was used as an additive in water-based drilling muds to improve rheological properties and reduce fluid loss at elevated temperatures (180-220 °C). The experimental results demonstrated that inclusion of an optimal concentration of PEX (0.3 wt %) into the drilling mud formulation increased the rheological properties by 62.3% and decreased the filtration loss by 63.5% at an aging temperature of 180 °C. Moreover, PEX was found to perform superbly compared to polyanionic cellulose (PAC-LV) and polyacrylamide (PAM), the widely used drilling mud additives. PEX not only improved the rheological properties and reduced the filtration loss behavior but also bolstered the thermostability of the drilling mud formulation. It was concluded that the rigidity and amphoteric nature of PEX accounted for the exceptional performance and temperature resistance for PEX-drilling mud formulations. Succinctly, PEX exhibits admirable properties in smart drilling mud formulations for drilling operations under high-temperature geothermal conditions. Moreover, in terms of rheological models, the Herschel-Bulkley model adequately described the rheological properties of all the studied drilling mud formulations.

6.
Behav Res Methods ; 39(4): 776-82, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18183890

RESUMO

Operant devices have been used for many years in animal behavior research, yet such devices a regenerally highly specialized and quite expensive. Although commercial models are somewhat adaptable and resilient, they are also extremely expensive and are controlled by difficult to learn proprietary software. As an alternative to commercial devices, we have designed and produced a fully functional, programmable operant device, using a PICmicro microcontroller (Microchip Technology, Inc.). The electronic operant testing apparatus (ELOPTA) is designed to deliver food when a study animal, in this case a bird, successfully depresses the correct sequence of illuminated keys. The device logs each keypress and can detect and log whenever a test animal i spositioned at the device. Data can be easily transferred to a computer and imported into any statistical analysis software. At about 3% the cost of a commercial device, ELOPTA will advance behavioral sciences, including behavioral ecology, animal learning and cognition, and ethology.


Assuntos
Comportamento Animal , Psicologia/instrumentação , Animais , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA