Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(10): 2591-2594, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186716

RESUMO

In this Letter, we show stable suspension and directional manipulation of microdroplets on a liquid surface employing simple-mode fiber with a Gaussian beam at 1480-nm wavelength using the photothermal effect. The intensity of the light field generated by the single-mode fiber is used to generate droplets of different numbers and sizes. In addition, the effect of the heat generated at different heights from the liquid surface is discussed through numerical simulation. In this work, the optical fiber is not only free to move at any angle, solving the difficulty that a certain working distance is needed to generate microdroplets on free space, it can also allow the continuous generation and directional manipulation of multiple microdroplets, which is of tremendous scientific relevance and application value in promoting the development and cross-fertilization of life sciences and other interdisciplinary fields.

2.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30504216

RESUMO

The discovery of hyperthermophiles has dramatically changed our understanding of the habitats in which life can thrive. However, the extreme high temperatures in which these organisms live have severely restricted the development of genetic tools. The archaeon Pyrococcus yayanosii A1 is a strictly anaerobic and piezophilic hyperthermophile that is an ideal model for studies of extreme environmental adaptation. In the present study, we identified a high hydrostatic pressure (HHP)-inducible promoter (P hhp ) that controls target gene expression under HHP. We developed an HHP-inducible toxin-antitoxin cassette (HHP-TAC) containing (i) a counterselectable marker in which a gene encoding a putative toxin (virulence-associated protein C [PF0776 {VapC}]) controlled by the HHP-inducible promoter was used in conjunction with the gene encoding antitoxin PF0775 (VapB), which was fused to a constitutive promoter (P hmtB ), and (ii) a positive marker with the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase-encoding gene from P. furiosus controlled by the constitutive promoter P gdh The HHP-TAC was constructed to realize markerless gene disruption directly in P. yayanosii A1 in rich medium. The pop-out recombination step was performed using an HHP-inducible method. As proof, the PYCH_13690 gene, which encodes a 4-α-glucanotransferase, was successfully deleted from the strain P. yayanosii A1. The results showed that the capacity for starch hydrolysis in the Δ1369 mutant decreased dramatically compared to that in the wild-type strain. The inducible toxin-antitoxin system developed in this study greatly increases the genetic tools available for use in hyperthermophiles.IMPORTANCE Genetic manipulations in hyperthermophiles have been studied for over 20 years. However, the extremely high temperatures under which these organisms grow have limited the development of genetic tools. In this study, an HHP-inducible promoter was used to control the expression of a toxin. Compared to sugar-inducible and cold-shock-inducible promoters, the HHP-inducible promoter rarely has negative effects on the overall physiology and central metabolism of microorganisms, especially piezophilic hyperthermophiles. Previous studies have used auxotrophic strains as hosts, which may interfere with studies of adaptation and metabolism. Using an inducible toxin-antitoxin (TA) system as a counterselectable marker enables the generation of a markerless gene disruption strain without the use of auxotrophic mutants and counterselection with 5-fluoroorotic acid. TA systems are widely distributed in bacteria and archaea and can be used to overcome the limitations of high growth temperatures and dramatically extend the selectivity of genetic tools in hyperthermophiles.


Assuntos
Adaptação Fisiológica/genética , Antitoxinas/genética , Archaea/genética , Proteínas Arqueais/metabolismo , Pressão Hidrostática , Pyrococcus/genética , Toxinas Biológicas/genética , Archaea/fisiologia , Proteínas Arqueais/genética , Proteínas de Bactérias , Sequência de Bases , DNA Arqueal , Proteínas de Ligação a DNA , Regulação da Expressão Gênica em Archaea , Genes Arqueais/genética , Temperatura Alta , Fontes Hidrotermais , Hidroximetilglutaril-CoA Redutases/genética , Glicoproteínas de Membrana , Ácido Orótico/análogos & derivados , Regiões Promotoras Genéticas , Pyrococcus/fisiologia , Toxinas Biológicas/metabolismo , Transformação Genética
3.
Extremophiles ; 22(3): 347-357, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29335804

RESUMO

Toxin-antitoxin (TA) system is bacterial or archaeal genetic module consisting of toxin and antitoxin gene that be organized as a bicistronic operon. TA system could elicit programmed cell death, which is supposed to play important roles for the survival of prokaryotic population under various physiological stress conditions. The phage abortive infection system (AbiE family) belongs to bacterial type IV TA system. However, no archaeal AbiE family TA system has been reported so far. In this study, a putative AbiE TA system (PygAT), which is located in a genomic island PYG1 in the chromosome of Pyrococcus yayanosii CH1, was identified and characterized. In Escherichia coli, overexpression of the toxin gene pygT inhibited its growth while the toxic effect can be suppressed by introducing the antitoxin gene pygA in the same cell. PygAT also enhances the stability of shuttle plasmids with archaeal plasmid replication protein Rep75 in E. coli. In P. yayanosii, disruption of antitoxin gene pygA cause a significantly growth delayed under high hydrostatic pressure (HHP). The antitoxin protein PygA can specifically bind to the PygAT promoter region and regulate the transcription of pygT gene in vivo. These results show that PygAT is a functional TA system in P. yayanosii, and also may play a role in the adaptation to HHP environment.


Assuntos
Proteínas Arqueais/genética , Pyrococcus/genética , Toxinas Biológicas/metabolismo , Sistemas de Secreção Tipo IV/genética , Proteínas Arqueais/metabolismo , Óperon , Pyrococcus/metabolismo , Toxinas Biológicas/genética , Sistemas de Secreção Tipo IV/metabolismo
4.
Extremophiles ; 20(5): 663-71, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27342115

RESUMO

The deep-sea water of the South Pacific Gyre (SPG, 20°S-45°S) is a cold and ultra-oligotrophic environment that is the source of cold-adapted enzymes. However, the characteristic features of psychrophilic enzymes derived from culturable microbes in the SPG remained largely unknown. In this study, the degradation properties of 174 cultures from the deep water of the SPG were used to determine the diversity of cold-adapted enzymes. Thus, the abilities to degrade polysaccharides, proteins, lipids, and DNA at 4, 16, and 28 °C were investigated. Most of the isolates showed one or more extracellular enzyme activities, including amylase, chitinase, cellulase, lipase, lecithinase, caseinase, gelatinase, and DNase at 4, 16, and 28 °C. Moreover, nearly 85.6 % of the isolates produced cold-adapted enzymes at 4 °C. The psychrophilic enzyme-producing isolates distributed primarily in Alteromonas and Pseudoalteromonas genera of the Gammaproteobacteria. Pseudoalteromonas degraded 9 types of macromolecules but not cellulose, Alteromonas secreted 8 enzymes except for cellulase and chitinase. Interestingly, the enzymatic activities of Gammaproteobacteria isolates at 4 °C were higher than those observed at 16 or 28 °C. In addition, we cloned and expressed a gene encoding an α-amylase (Amy2235) from Luteimonas abyssi XH031(T), and examined the properties of the recombinant protein. These cold-active enzymes may have huge potential for academic research and industrial applications. In addition, the capacity of the isolates to degrade various types of organic matter may indicate their unique ecological roles in the elemental biogeochemical cycling of the deep biosphere.


Assuntos
Proteínas de Bactérias/metabolismo , Temperatura Baixa , Glicosídeo Hidrolases/metabolismo , Lipase/metabolismo , Microbiota , Peptídeo Hidrolases/metabolismo , Água do Mar/microbiologia , Adaptação Fisiológica , Proteínas de Bactérias/genética , Metabolismo dos Carboidratos , Glicosídeo Hidrolases/genética , Pressão Hidrostática , Lipase/genética , Metabolismo dos Lipídeos , Oceano Pacífico , Peptídeo Hidrolases/genética , Proteólise
5.
Mar Drugs ; 14(10)2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27669268

RESUMO

Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes.


Assuntos
Enzimas/química , Biologia Marinha , Microbiologia da Água , Hidrolases de Éster Carboxílico/química
6.
Anal Chim Acta ; 1316: 342820, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969422

RESUMO

This research presents an innovative reflective fiber optic probe structure, mutinously designed to detect H7N9 avian influenza virus gene precisely. This innovative structure skillfully combines multimode fiber (MMF) with a thin-diameter seven-core photonic crystal fiber (SCF-PCF), forming a semi-open Fabry-Pérot (FPI) cavity. This structure has demonstrated exceptional sensitivity in light intensity-refractive index (RI) response through rigorous theoretical and experimental validation. The development of a quasi-distributed parallel sensor array, which provides temperature compensation during measurements, has achieved a remarkable RI response sensitivity of up to 532.7 dB/RIU. The probe-type fiber optic sensitive unit, expertly functionalized with streptavidin, offers high specificity in detecting H7N9 avian influenza virus gene, with an impressively low detection limit of 10-2 pM. The development of this biosensor marks a significant development in biological detection, offering a practical engineering solution for achieving high sensitivity and specificity in light-intensity-modulated biosensing. Its potential for wide-ranging applications in various fields is now well-established.


Assuntos
Técnicas Biossensoriais , Subtipo H7N9 do Vírus da Influenza A , Temperatura , Técnicas Biossensoriais/métodos , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Fibras Ópticas , Limite de Detecção , Tecnologia de Fibra Óptica/métodos , Animais , Genes Virais
7.
Se Pu ; 38(8): 914-922, 2020 Aug 08.
Artigo em Zh | MEDLINE | ID: mdl-34213183

RESUMO

Archaea are single-cell microorganisms, structurally and biochemically similar to bacteria and fungi. Most of them live in extreme environments, such as high salt, extremely acidic, extremely hot, and anaerobicenvironments. The membrane structure and related metabolic pathways of archaea are different from those of other microorganisms. Therefore, studying the lipid metabolism of archaea is of great significance for exploring the life activities in extreme environments. As the first step in lipidomic analysis, lipid extraction and pretreatment methods play an important role, as they influence the accuracy and reliability of the final results. We harnessed ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS) to detect the total normal lipids. The hyperthermophilic archaeon Pyrococcus yayanosii was selected as the model. The Bligh-Dyer acidic method, Folch method, methyl tert-butyl ether (MTBE) method, and solid-phase extraction (SPE) method were compared by multi-component analysis in terms of extraction efficiency, reproducibility, and extraction discrimination. Comprehensive analysis revealed that the SPE and MTBE methods showed the best extraction repeatability and extraction efficiency, and were suitable for high-throughput microbial lipid extraction. Finally, normal lipid components of P. yayanosii were comprehensively analyzed by SPE coupled with UPLC-HRMS. A total of 1402 lipid components were identified. This article aims to provide a reference for non-targeted lipidomic analysis of archaea and other microorganisms towards understanding their lipid metabolism.


Assuntos
Archaea , Lipidômica , Lipídeos/análise , Archaea/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Pyrococcus/química , Reprodutibilidade dos Testes
8.
Enzyme Microb Technol ; 90: 83-92, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27241296

RESUMO

Alpha-amylase is a kind of broadly used industrial enzymes, most of which have been exploited from terrestrial organism. Comparatively, alpha-amylase from marine environment was largely undeveloped. In this study, a novel alkalophilic alpha-amylase with high activity, Luteimonas abyssi alpha-amylase (LaaA), was cloned from deep-sea bacterium L. abyssi XH031(T) and expressed in Escherichia coli BL21. The gene has a length of 1428bp and encodes 475 amino acids with a 35-residue signal peptide. The specific activity of LaaA reached 8881U/mg at the optimum pH 9.0, which is obvious higher than other reported alpha-amylase. This enzyme can remain active at pH levels ranging from 6.0 to 11.0 and temperatures below 45°C, retaining high activity even at low temperatures (almost 38% residual activity at 10°C). In addition, 1mM Na(+), K(+), and Mn(2+) enhanced the activity of LaaA. To investigate the function of potential active sites, R227G, D229K, E256Q/H, H327V and D328V mutants were generated, and the results suggested that Arg227, Asp229, Glu256 and Asp328 were total conserved and essential for the activity of alpha-amylase LaaA. This study shows that the alpha-amylase LaaA is an alkali-tolerant and high-active amylase with strong potential for use in detergent industry.


Assuntos
Proteínas de Bactérias/metabolismo , Xanthomonadaceae/enzimologia , alfa-Amilases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Cinética , Mutagênese Sítio-Dirigida , Filogenia , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Água do Mar/microbiologia , Homologia de Sequência de Aminoácidos , Xanthomonadaceae/genética , Xanthomonadaceae/isolamento & purificação , alfa-Amilases/química , alfa-Amilases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA