Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(12): 4831-4838, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35674810

RESUMO

Here, we report on a novel class of fluorofoldamer-based artificial water channels (AWCs) that combines excellent water transport rate and selectivity with structural simplicity and robustness. Produced by a facile one-pot copolymerization reaction under mild conditions, the best-performing channel (AWC 1) is an n-C8H17-decorated foldamer nanotube with an average channel length of 2.8 nm and a pore diameter of 5.2 Å. AWC 1 demonstrates an ultrafast water conduction rate of 1.4 × 1010 H2O/s per channel, outperforming the archetypal biological water channel, aquaporin 1, while excluding salts (i.e., NaCl and KCl) and protons. Unique to this class of channels, the inwardly facing C(sp2)-F atoms being the most electronegative in the periodic table are proposed as being critical to enabling the ultrafast and superselective water transport properties by decreasing the channel's cavity and enhancing the channel wall smoothness via reducing intermolecular forces with water molecules or hydrated ions.


Assuntos
Aquaporinas , Prótons , Aquaporinas/química , Transporte Biológico , Cloreto de Sódio , Água/química
2.
Langmuir ; 38(30): 9085-9091, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35862878

RESUMO

A molecular scale understanding of the fast and selective water transport in biological water channels, aquaporins (AQPs), has inspired attempts to mimic its performance in synthetic structures. These synthetic structures, referred to as artificial water channels (AWCs), present several advantages over AQPs in applications. After over a decade of efforts, the unique transport properties of AQPs have been reproduced in AWCs. Further, recent developments have shown that the performance of benchmark AQP channels can be exceeded by new AWC designs using novel features not seen in biology. In this Perspective, we provide a brief overview of recent AWC developments, and share our perspective on forward-looking AWC research.


Assuntos
Aquaporinas , Aquaporinas/química , Aquaporinas/metabolismo , Transporte Biológico , Água/metabolismo
3.
Nat Mater ; 19(3): 347-354, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31988513

RESUMO

Biological membranes are ideal for separations as they provide high permeability while maintaining high solute selectivity due to the presence of specialized membrane protein (MP) channels. However, successful integration of MPs into manufactured membranes has remained a significant challenge. Here, we demonstrate a two-hour organic solvent method to develop 2D crystals and nanosheets of highly packed pore-forming MPs in block copolymers (BCPs). We then integrate these hybrid materials into scalable MP-BCP biomimetic membranes. These MP-BCP nanosheet membranes maintain the molecular selectivity of the three types of ß-barrel MP channels used, with pore sizes of 0.8 nm, 1.3 nm, and 1.5 nm. These biomimetic membranes demonstrate water permeability that is 20-1,000 times greater than that of commercial membranes and 1.5-45 times greater than that of the latest research membranes with comparable molecular exclusion ratings. This approach could provide high performance alternatives in the challenging sub-nanometre to few-nanometre size range.


Assuntos
Proteínas de Membrana/química , Membranas Artificiais , Nanoestruturas/química , Modelos Moleculares , Permeabilidade , Porosidade , Conformação Proteica em Folha beta , Solventes/química , Fatores de Tempo
4.
Langmuir ; 35(3): 589-607, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30577695

RESUMO

Biomimetic and bioinspired membranes have emerged as an innovative platform for water purification and aqueous separations. They are inspired by the exceptional water permeability (∼109 water molecules per second per channel) and perfect selectivity of biological water channels, aquaporins. However, only few successes have been reported for channel-based membrane fabrication due to inherent challenges of realizing coherence between channel design at the angstrom level and development of scalable membranes that maintain these molecular properties at practice-relevant scales. In this article, we feature recent progress toward practical biomimetic membranes, with the review organized along a hierarchical structural perspective that biomimetic membranes commonly share. These structures range from unitary pore shapes and tubular hydrophobic channel geometries to self-assembled bilayer structures and finally to macroscale membranes covering a size range from the angstrom, to the micrometer scale, and finally to the centimeter and larger scales. To maximize the advantage of water channel implementation into membranes, each feature needs to be optimized in an appropriate manner that provides a path to successful scale-up to achieve high performance in practical biomimetic and bioinspired membranes.

5.
Faraday Discuss ; 209(0): 193-204, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29999507

RESUMO

Artificial water channels are a practical alternative to biological water channels for achieving exceptional water permeability and selectivity in a stable and scalable architecture. However, channel-based membrane fabrication faces critical barriers such as: (1) increasing pore density to achieve measurable gains in permeability while maintaining selectivity, and (2) scale-up to practical membrane sizes for applications. Recently, we proposed a technique to prepare channel-based membranes using peptide-appended pillar[5]arene (PAP[5]) artificial water channels, addressing the above challenges. These multi-layered PAP[5] membranes (ML-PAP[5]) showed significantly improved water permeability compared to commercial membranes with similar molecular weight cut-offs. However, due to the distinctive pore structure of water channels and the layer-by-layer architecture of the membrane, the separation behavior is unique and was still not fully understood. In this paper, two unique selectivity trends of ML-PAP[5] membranes are discussed from the perspectives of channel geometry, ion exclusion, and linear molecule transport.

6.
Faraday Discuss ; 209(0): 179-191, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29972389

RESUMO

The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)-block-poly(ethylene oxide)-block-poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes.


Assuntos
Materiais Biomiméticos/química , Reagentes de Ligações Cruzadas/química , Bicamadas Lipídicas/química , Polímeros/química , Reagentes de Ligações Cruzadas/síntese química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/síntese química , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
7.
Artigo em Inglês | MEDLINE | ID: mdl-38598825

RESUMO

Novel vapor-permeable materials are sought after for applications in protective wear, energy generation, and water treatment. Current impermeable protective materials effectively block harmful agents but trap heat due to poor water vapor transfer. Here we present a new class of materials, vapor permeable dehydrated nanoporous biomimetic membranes (DBMs), based on channel proteins. This application for biomimetic membranes is unexpected as channel proteins and biomimetic membranes were assumed to be unstable under dry conditions. DBMs mimic human skin's structure to offer both high vapor transport and small molecule exclusion under dry conditions. DBMs feature highly organized pores resembling sweat pores in human skin, but at super high densities (>1012 pores/cm2). These DBMs achieved exceptional water vapor transport rates, surpassing commercial breathable fabrics by up to 6.2 times, despite containing >2 orders of magnitude smaller pores (1 nm vs >700 nm). These DBMs effectively excluded model biological agents and harmful chemicals both in liquid and vapor phases, again in contrast with the commercial breathable fabrics. Remarkably, while hydrated biomimetic membranes were highly permeable to liquid water, they exhibited higher water resistances after dehydration at values >38 times that of commercial breathable fabrics. Molecular dynamics simulations support our hypothesis that dehydration induced protein hydrophobicity increases which enhanced DBM performance. DBMs hold promise for various applications, including membrane distillation, dehumidification, and protective barriers for atmospheric water harvesting materials.

10.
Nat Nanotechnol ; 16(8): 911-917, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34017100

RESUMO

The outstanding capacity of aquaporins (AQPs) for mediating highly selective superfast water transport1-7 has inspired recent development of supramolecular monovalent ion-excluding artificial water channels (AWCs). AWC-based bioinspired membranes are proposed for desalination, water purification and other separation applications8-18. While some recent progress has been made in synthesizing AWCs that approach the water permeability and ion selectivity of AQPs, a hallmark feature of AQPs-high water transport while excluding protons-has not been reproduced. We report a class of biomimetic, helically folded pore-forming polymeric foldamers that can serve as long-sought-after highly selective ultrafast water-conducting channels with performance exceeding those of AQPs (1.1 × 1010 water molecules per second for AQP1), with high water-over-monovalent-ion transport selectivity (~108 water molecules over Cl- ion) conferred by the modularly tunable hydrophobicity of the interior pore surface. The best-performing AWC reported here delivers water transport at an exceptionally high rate, namely, 2.5 times that of AQP1, while concurrently rejecting salts (NaCl and KCl) and even protons.


Assuntos
Aquaporinas/química , Bicamadas Lipídicas/química , Prótons , Transporte de Íons
11.
Nat Nanotechnol ; 15(1): 73-79, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844288

RESUMO

Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrated that PAH[4]s can form, through lateral diffusion, clusters in lipid membranes that provide synergistic membrane-spanning paths for a rapid and selective water permeation through water-wire networks. Quantitative transport studies revealed that PAH[4]s can transport >109 water molecules per second per molecule, which is comparable to aquaporin water channels. The performance of these channels exceeds the upper bound limit of current desalination membranes by a factor of ~104, as illustrated by the water/NaCl permeability-selectivity trade-off curve. PAH[4]'s unique properties of a high water/solute permselectivity via cooperative water-wire formation could usher in an alternative design paradigm for permeable membrane materials in separations, energy production and barrier applications.


Assuntos
Nanoestruturas/química , Peptídeos/química , Água/química , Aquaporinas/química , Calixarenos/química , Membranas Artificiais , Simulação de Dinâmica Molecular , Permeabilidade , Fenóis/química
13.
Nat Commun ; 10(1): 3855, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451686

RESUMO

Due to their distinctive molecular architecture, ABA triblock copolymers will undergo specific self-assembly processes into various nanostructures upon introduction into a B-block selective solvent. Although much of the focus in ABA triblock copolymer self-assembly has been on equilibrium nanostructures, little attention has been paid to the guiding principles of nanostructure formation during non-equilibrium processing conditions. Here we report a universal and quantitative method for fabricating and controlling ABA triblock copolymer hierarchical structures using solvent-non-solvent rapid-injection processing. Plasmonic nanocomposite hydrogels containing gold nanoparticles and hierarchically-ordered hydrogels exhibiting structural color can be assembled within one minute using this rapid-injection technique. Surprisingly, the rapid-injection hydrogels display superior mechanical properties compared with those of conventional ABA hydrogels. This work will allow for translation into technologically relevant areas such as drug delivery, tissue engineering, regenerative medicine, and soft robotics, in which structure and mechanical property precision are essential.

14.
ACS Nano ; 13(7): 8292-8302, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31251576

RESUMO

Cell membranes control mass, energy, and information flow to and from the cell. In the cell membrane a lipid bilayer serves as the barrier layer, with highly efficient molecular machines, membrane proteins, serving as the transport elements. In this way, highly specialized transport properties are achieved by these composite materials by segregating the matrix function from the transport function using different components. For example, cell membranes containing aquaporin proteins can transport ∼4 billion water molecules per second per aquaporin while rejecting all other molecules including salts, a feat unmatched by any synthetic system, while the impermeable lipid bilayer provides the barrier and matrix properties. True separation of functions between the matrix and the transport elements has been difficult to achieve in conventional solute separation synthetic membranes. In this study, we created membranes with distinct matrix and transport elements through designed coassembly of solvent-stable artificial (peptide-appended pillar[5]arene, PAP5) or natural (gramicidin A) model channels with block copolymers into lamellar multilayered membranes. Self-assembly of a lamellar structure from cross-linkable triblock copolymers was used as a scalable replacement for lipid bilayers, offering better stability and mechanical properties. By coassembly of channel molecules with block copolymers, we were able to synthesize nanofiltration membranes with sharp selectivity profiles as well as uncharged ion exchange membranes exhibiting ion selectivity. The developed method can be used for incorporation of different artificial and biological ion and water channels into synthetic polymer membranes. The strategy reported here could promote the construction of a range of channel-based membranes and sensors with desired properties, such as ion separations, stimuli responsiveness, and high sensitivity.


Assuntos
Materiais Biomiméticos/metabolismo , Canais Iônicos/metabolismo , Bicamadas Lipídicas/metabolismo , Polímeros/metabolismo , Transporte Biológico , Materiais Biomiméticos/química , Materiais Biomiméticos/isolamento & purificação , Canais Iônicos/química , Bicamadas Lipídicas/química , Tamanho da Partícula , Polímeros/síntese química , Polímeros/química , Propriedades de Superfície
15.
Nat Commun ; 9(1): 3304, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108220

RESUMO

The original version of this Article contained an error in the spelling of the author Woochul Song, which was incorrectly given as Woochul C. Song. This has been corrected in both the PDF and HTML versions of the Article.

16.
Nat Commun ; 9(1): 2294, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895901

RESUMO

Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m-2 h-1 bar-1 compared with 4-7 L m-2 h-1 bar-1) over similarly rated commercial membranes.


Assuntos
Membranas Artificiais , Simulação de Dinâmica Molecular , Polímeros/química , Água/química , Aquaporinas/química , Simulação por Computador , Detergentes/química , Bicamadas Lipídicas/química , Lipossomos/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Peso Molecular , Permeabilidade , Porosidade , Sais/química
17.
Anat Rec (Hoboken) ; 293(1): 117-25, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19798703

RESUMO

The aim of this study was to clarify the nerve distribution of the masseter, temporalis, and zygomaticomandibularis (ZM) muscles to elucidate the phylogenetic traits of canine mastication. A detailed dissection was made of 15 hemisectioned heads of adult beagle dogs. The innervations of the masticatory nerve twigs exhibited a characteristic pattern and were classified into seven groups. Twig innervating the anterior portion of the temporalis (aTM) was defined as the anterior temporal nerve (ATN). Anterior twig of ATN branched from the buccal nerve and innervated only the aTM, whereas posterior twig of ATN innervated both of the aTM and deep layer of the tempolaris (dTM). From this and morphological observations, it was proposed that the action of the canine aTM is more independent than that of the human. The middle temporal nerve ran superoposteriorly within the dTM and superficial layer of the temporalis (sTM) innervating both of them, whereas the posterior temporal nerve innervated only the posterior region of the sTM. The masseteric nerve (MSN) innervated the ZM and the three layers of the masseter. Deep twig of MSN was also observed innervating sTM after entering the ZM in all cases. The major role played by the canine ZM might thus underlie the differential arrangement of the distribution of the masticatory nerve bundles in dogs and humans. Although the patterns of innervation to the canine and human masticatory muscles were somewhat similar, there were some differences that might be due to evolutionary adaptation to their respective feeding styles.


Assuntos
Cães/anatomia & histologia , Músculos da Mastigação/anatomia & histologia , Músculos da Mastigação/inervação , Animais , Humanos
18.
Clin Implant Dent Relat Res ; 11 Suppl 1: e2-6, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19438968

RESUMO

PURPOSE: This study aimed to quantify the thickness of the buccofacial wall of the maxillary sinus where sinus augmentations are often performed. MATERIALS AND METHODS: Fourteen sites located 15 and 20 mm superior to the anatomical cervical line (named as groups H15 and H20, respectively) and along the long axes of the mid and the interproximal of two premolars and two molars were measured from 74 Korean hemiface cadavers. RESULTS: The buccofacial wall of the maxillary sinus was thinnest at the area between the maxillary second premolar and first molar in groups H15 and H20. The lowest mean thickness was 1.2 mm in both groups. The walls were thicker in males than in females, with statistically significant gender differences found at four and two sites on the anterior horizontal reference in groups H15 and H20, respectively. However, the thickness did not differ significantly with age or laterality. Incomplete septa were found in seven of the 74 specimens, and they were present in the area between the first and second molars in six (86%) of these cases. CONCLUSIONS: These observations indicate that anatomical characteristics of the buccofacial wall thickness of the maxillary sinus need to be considered when performing a window opening procedure for sinus augmentation.


Assuntos
Seio Maxilar/anatomia & histologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Densidade Óssea , Cadáver , Cefalometria , Feminino , Humanos , Coreia (Geográfico) , Masculino , Maxila/anatomia & histologia , Pessoa de Meia-Idade , Valores de Referência , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA