Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Biotechnol J ; 21(7): 1343-1360, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719169

RESUMO

FLOWERING LOCUS T (FT), a florigen in Arabidopsis, plays critical roles in floral transition. Among 13 FT-like members in rice, OsFTL2 (Hd3a) and OsFTL3 (RFT1), two rice homologues of FT, have been well characterized to act as florigens to induce flowering under short-day (SD) and long-day (LD) conditions, respectively, but the functions of other rice FT-like members remain largely unclear. Here, we show that OsFTL12 plays an antagonistic function against Hd3a and RFT1 to modulate the heading date and plant architecture in rice. Unlike Hd3a and RFT1, OsFTL12 is not regulated by daylength and highly expressed in both SD and LD conditions, and delays the heading date under either SD or LD conditions. We further demonstrate that OsFTL12 interacts with GF14b and OsFD1, two key components of the florigen activation complex (FAC), to form the florigen repression complex (FRC) by competing with Hd3a for binding GF14b. Notably, OsFTL12-FRC can bind to the promoters of the floral identity genes OsMADS14 and OsMADS15 and suppress their expression. The osmads14 osmads15 double mutants could not develop panicles and showed erect leaves. Taken together, our results reveal that different FT-like members can fine-tune heading date and plant architecture by regulating the balance of FAC and FRC in rice.


Assuntos
Florígeno , Oryza , Florígeno/metabolismo , Florígeno/farmacologia , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/fisiologia , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fotoperíodo
2.
Plant Cell ; 32(10): 3124-3138, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32796126

RESUMO

Circadian clocks regulate growth and development in plants and animals, but the role of circadian regulation in crop production is poorly understood. Rice (Oryza sativa) grain yield is largely determined by tillering, which is mediated by physiological and genetic factors. Here we report a regulatory loop that involves the circadian clock, sugar, and strigolactone (SL) pathway to regulate rice tiller-bud and panicle development. Rice CIRCADIAN CLOCK ASSOCIATED1 (OsCCA1) positively regulates expression of TEOSINTE BRANCHED1 (OsTB1, also known as FC1), DWARF14 (D14), and IDEAL PLANT ARCHITECTURE1 (IPA1, also known as OsSPL14) to repress tiller-bud outgrowth. Downregulating and overexpressing OsCCA1 increases and reduces tiller numbers, respectively, whereas manipulating PSEUDORESPONSE REGULATOR1 (OsPPR1) expression results in the opposite effects. OsCCA1 also regulates IPA1 expression to mediate panicle and grain development. Genetic analyses using double mutants and overexpression in the mutants show that OsTB1, D14, and IPA1 act downstream of OsCCA1 Sugars repress OsCCA1 expression in roots and tiller buds to promote tiller-bud outgrowth. The circadian clock integrates sugar responses and the SL pathway to regulate tiller and panicle development, providing insights into improving plant architecture and yield in rice and other cereal crops.


Assuntos
Relógios Circadianos/fisiologia , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transdução de Sinais
3.
Environ Res ; 212(Pt D): 113588, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654157

RESUMO

Although groundwater is the primary drinking water source in northern of China, little is known about generation mechanisms and related health risks of high fluoride groundwater at the geomorphic transition zones. Thus, 419 groundwater samples were collected from Zhangjiakou region, where is a typically geomorphic transition zone of the North China Plain and the Inner Mongolia Plateau, to conduct the hydrochemical analysis, geochemical modeling, multivariate statistical analysis, and health risks assessment. From the results, F- concentration in groundwater had a range of 0.05-9.71 mg L-1. About 37.1% and 26.2% of groundwater samples from Bashang region (BSR) and Baxia region (BXR), respectively, were over the 1.50 mg L-1, which were mainly distributed in the groundwater flow retardation area and/or evaporation discharge area. Thermodynamic simulations demonstrated that F-bearing minerals dissolution and Ca2+/Mg2+ removal via calcite/dolomite precipitation primarily governed high-F- groundwater formation in the whole study area. Competitive adsorption, evaporation, evaporites dissolution and salt-effect also affected F- enrichment in BSR. Desorption in alkaline environment, ion exchange and human activities played a vital role in F- enrichment at BXR. The multivariate statistical analysis revealed that the origin of F- contamination was geogenic in BSR; whereas, it was geogenic and anthropogenic in BXR. Besides, more than 71.8%, 51.0%, 36.1% and 25.5% of the study area exceeded the acceptable level (health index>1) for infants, children, adult males, and females, respectively. The health risks for different groups of people varied significantly and ranked: infants > children > males > females, suggesting that younger people were more susceptible to fluoride contamination. Meanwhile, females were more resistant to fluoride contamination than males. These findings are vital to providing insights on high-F- groundwater formation, investigate the situation of health risks, and conduct the integrated management for high fluoride groundwater in geomorphic transition zones at northern China.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Adulto , Criança , China , Água Potável/análise , Monitoramento Ambiental , Fluoretos/análise , Água Subterrânea/análise , Humanos , Poluentes Químicos da Água/análise
4.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5246-5255, 2022 Oct.
Artigo em Zh | MEDLINE | ID: mdl-36472031

RESUMO

The present study quickly identified the ginsenosides in fresh Panax ginseng and specified the effects of different drying methods(50 ℃-drying, 80 ℃-drying, and-70 ℃ freeze-drying) on ginsenosides.Three P.ginseng products by different drying methods were prepared, and the UHPLC-Q-Exactive Orbitrap high-resolution liquid mass spectrometry(MS) technique was applied to perform gradient elution using water-acetonitrile as the mobile phase, and the data collected in the negative ion mode were analyzed using X Calibur 2.2.The results showed that 57 saponins were identified from fresh P.ginseng.As revealed by the comparison with the fresh P.ginseng, in terms of the loss of ginsenosides, the dried products were ranked as the dried product at 50 ℃, freeze-dried products at-70 ℃, and the dried product at 80 ℃ in the ascending order.This study elucidated the effects of different drying methods on the types and relative content of ginsenosides, which can provide references for the processing of P.ginseng in the producing areas.


Assuntos
Ginsenosídeos , Panax , Saponinas , Ginsenosídeos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos
5.
J Environ Sci (China) ; 110: 38-47, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34593193

RESUMO

To assess groundwater nitrate contamination and its human health risks, 489 unconfined groundwater samples were collected and analyzed from Zhangjiakou, northern China. The spatial distribution of principle hydrogeochemical results showed that the average concentrations of ions in descend order was HCO3-, SO42-, Na+, Ca2+, Cl-, NO3-, Mg2+ and K+, among which the NO3- concentrations were between 0.25 and 536.73 mg/L with an average of 29.72 mg/L. In total, 167 out of 489 samples (~ 34%) exceeded the recommended concentration of 20 mg/L in Quality Standard for Groundwater of China. The high NO3- concentration groundwater mainly located in the northern part and near the boundary of the two geomorphic units. As revealed by statistical analysis, the groundwater chemistry was more significantly affected by anthropogenic sources than by the geogenic sources. Moreover, human health risks of groundwater nitrate through oral and dermal exposure pathways were assessed by model, the results showed that about 60%, 50%, 32% and 26% of the area exceeded the acceptable level (total health index>1) for infants, children, adult males and females, respectively. The health risks for different groups of people varied significantly, ranked: infants> children> adult males>adult females, suggesting that younger people are more susceptible to nitrate contamination, while females are more resistant to nitrate contamination than males. To ensure the drinking water safety in Zhangjiakou and its downstream areas, proper management and treatment of groundwater will be necessary to avoid the health risks associated with nitrate contamination.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , China , Monitoramento Ambiental , Feminino , Humanos , Masculino , Nitratos/análise , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Water Sci Technol ; 76(7-8): 1915-1924, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28991806

RESUMO

With an efficient methodology, a novel chloromethylated polystyrene-g-2-mercapto-1,3,4-thiadiazole chelating resin (MTR resin) was prepared via a one-step reaction. The structure of MTR resin was characterized by elements analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Meanwhile, the adsorption properties of the resin for Hg(II) were investigated by batch and column experiments. The results showed that the resin possessed much better adsorption capability for Hg(II) than for other metal ions. The statically and the dynamic saturated adsorption capacities were 343.8 mg/g and 475.1 mg/g. The adsorption kinetic and equilibrium data were well fitted to the second-order model and the Langmuir isotherm model, respectively. Desorption of mercury from the resin can be achieved using 30 mL of 2 mol/L HCl-5% thiourea solution with a desorption ratio of 92.3%. Compared with other absorbents, MTR resin was greatly conserve natural resources and reduce the cost.


Assuntos
Mercúrio/química , Poliestirenos/química , Água/química , Adsorção , Quelantes/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Poluentes Químicos da Água/química
7.
Microsyst Nanoeng ; 10: 64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784374

RESUMO

Flexible sensors have been widely studied for use in motion monitoring, human‒machine interactions (HMIs), personalized medicine, and soft intelligent robots. However, their practical application is limited by their low output performance, narrow measuring range, and unidirectional force detection. Here, to achieve flexibility and high performance simultaneously, we developed a flexible wide-range multidimensional force sensor (FWMFS) similar to bones embedded in muscle structures. The adjustable magnetic field endows the FWMFS with multidimensional perception for detecting forces in different directions. The multilayer stacked coils significantly improved the output from the µV to the mV level while ensuring FWMFS miniaturization. The optimized FWMFS exhibited a high voltage sensitivity of 0.227 mV/N (0.5-8.4 N) and 0.047 mV/N (8.4-60 N) in response to normal forces ranging from 0.5 N to 60 N and could detect lateral forces ranging from 0.2-1.1 N and voltage sensitivities of 1.039 mV/N (0.2-0.5 N) and 0.194 mV/N (0.5-1.1 N). In terms of normal force measurements, the FWMFS can monitor finger pressure and sliding trajectories in response to finger taps, as well as measure plantar pressure for assessing human movement. The plantar pressure signals of five human movements collected by the FWMFS were analyzed using the k-nearest neighbors classification algorithm, which achieved a recognition accuracy of 92%. Additionally, an artificial intelligence biometric authentication system is being developed that classifies and recognizes user passwords. Based on the lateral force measurement ability of the FWMFS, the direction of ball movement can be distinguished, and communication systems such as Morse Code can be expanded. This research has significant potential in intelligent sensing and personalized spatial recognition.

8.
Plant J ; 69(1): 104-15, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21880078

RESUMO

Cucumber mosaic virus suppressor 2b (CMV2b) is a nuclear viral suppressor that interferes with local and systemic silencing and inhibits AGO1 slicer activity. CMV2b-mediated transgene hypomethylation and its localization in Cajal bodies suggests a role of CMV2b in RNA-directed DNA methylation (RdDM). However, its direct involvement in RdDM, or its binding with small RNAs (sRNAs) in vivo is not yet established. Here, we show that CMV2b binds both microRNAs (miRNAs) and small interfering RNAs (siRNAs) in vivo. sRNA sequencing data from the CMV2b immunocomplex revealed its preferential binding with 24-nt repeat-associated siRNAs. We provide evidence that CMV2b also has direct interaction with the AGO4 protein by recognizing its PAZ and PIWI domains. Subsequent analysis of AGO4 functions revealed that CMV2b reduced AGO4 slicer activity and the methylation of several loci, accompanied by the augmented accumulation of 24-nt siRNAs in Arabidopsis inflorescences. Intriguingly, CMV2b also regulated an AGO4-related epiallele independently of its catalytic potential, which further reinforces the repressive effects of CMV2b on AGO4 activity. Collectively, our results demonstrate that CMV2b can counteract AGO4-related functions. We propose that by adopting novel counter-host defense strategies against AGO1 and AGO4 proteins, CMV creates a favorable cellular niche for its proliferation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas Argonautas/metabolismo , Cucumovirus/fisiologia , Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Virais/metabolismo , Adenosina/metabolismo , Arabidopsis/metabolismo , Metilação de DNA , Plantas Geneticamente Modificadas/virologia , Estrutura Terciária de Proteína , Sequências Repetitivas de Ácido Nucleico , Proteínas Virais/genética
9.
Mol Plant Microbe Interact ; 26(8): 927-36, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23634838

RESUMO

The P6 protein of Rice yellow stunt rhabdovirus (RYSV) is a virion structural protein that can be phosphorylated in vitro. However its exact function remains elusive. We found that P6 enhanced the virulence of Potato virus X (PVX) in Nicotiana benthamiana and N. tabacum plants, suggesting that it might function as a suppressor of RNA silencing. We examined the mechanism of P6-mediated silencing suppression by transiently expressing P6 in both N. benthamiana leaves and rice protoplasts. Our results showed that P6 could repress the production of secondary siRNAs and inhibit systemic green fluorescent protein RNA silencing but did not interfere with local RNA silencing in N. benthamiana plants or in rice protoplasts. Intriguingly, P6 and RDR6 had overlapping subcellular localization and P6 bound both rice and Arabidopsis RDR6 in vivo. Furthermore, transgenic rice plants expressing P6 showed enhanced susceptibility to infection by Rice stripe virus. Hence, we propose that P6 is part of the RYSV's counter-defense machinery against the plant RNA silencing system and plays a role mainly in affecting RDR6-mediated secondary siRNA synthesis. Our work provides a new perspective on how a plant-infecting nucleorhabdovirus may counteract host RNA silencing-mediated antiviral defense.


Assuntos
Proteínas de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Rhabdoviridae/metabolismo , Proteínas Virais/metabolismo , Animais , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plasmídeos , Potexvirus/patogenicidade , Interferência de RNA , Nicotiana/virologia , Proteínas Virais/classificação , Proteínas Virais/genética , Virulência
10.
Angew Chem Int Ed Engl ; 52(9): 2555-8, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23364901

RESUMO

Efficient: A copper-catalyzed enantioselective intramolecular insertion of carbenoids into phenolic O-H bonds has been developed. This method can be used for the synthesis of the title compounds in high yields and excellent enantioselectivities under mild and neutral conditions. NaBAr(F)=sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate.

11.
Environ Sci Pollut Res Int ; 30(41): 94552-94564, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532974

RESUMO

In the real world, humans are exposed to multiple metal(loid)s (designated hereafter metals) that contain essential metals as well as toxic metals. Exposure to the metal mixture was assumed to be associated with renal function impairment; however, there is no consensus on available studies. Therefore, we here explored the association between multiple metals exposure and indicators of renal function in the general population from southeastern China. A total of 11 metals with 6 human essential metals and 5 toxic metals were determined in the selected 720 subjects. In addition, serum uric acid (SUA), serum creatinine (SCR), and the estimated glomerular filtration rate (eGFR) were measured or calculated as indicators of renal function. Using multiple flexible statistical models of generalized linear model, elastic net regression, and Bayesian kernel machine regression, the joint as well as the individual effect of metals within the mixture, and the interactions between metals were explored. When exposed to the metal mixture, the statistically non-significantly increased SUA, the significantly increased SCR, and the significantly declined eGFR were observed. In addition, the declined renal function may be primarily attributed to lead (Pb), arsenic (As), and nickel (Ni) exposure. Finally, interactions, such as the synergistic effect between Pb and Mo on SUA, whereas the antagonistic effect between Ni and Cd on SCR and eGFR were identified. Our finding suggests that combined exposure to multiple metals would impair renal function. Therefore, reducing exposure to toxic heavy metals of Pb, As, and Cd and limiting exposure to the human essential metal of Ni would protect renal function.


Assuntos
Arsênio , Metais Pesados , Humanos , Estudos Transversais , Cádmio , Teorema de Bayes , Chumbo , Ácido Úrico , Níquel , Intoxicação por Metais Pesados , Rim/fisiologia , China
12.
Biol Trace Elem Res ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991670

RESUMO

Exposure to essential and toxic metals occurs simultaneously as a mixture in real-life. However, there is no consensus regarding the effects of co-exposure to multiple metal(loid)s (designated hereafter metals) on blood lipid levels. Thus, blood concentrations of six human essential metals and five toxic metals in 720 general populations from southeastern China were simultaneously determined as a measure of exposure. In addition, quantile g-computation, Bayesian kernel machine regression, elastic net regression, and generalized linear model were used to investigate both the joint and individual effects of exposure to this metal mixture on human blood lipid levels. The significant positive joint effect of exposure to this metal mixture on serum total cholesterol (TC) levels, rather than on serum triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, Castelli risk index I, Castelli risk index II, atherogenic coefficient, and non-HDL-C levels, was found. In addition, the positive effect may be primarily driven by selenium (Se), lead (Pb), and mercury (Hg) exposure. In addition, on the effect of TC levels, the synergistic effect between Pb and Hg and the antagonistic effect between Se and Pb were identified. Our finding suggests that combined exposure to this metal mixture may affect human blood lipid levels. Therefore, reducing exposure to heavy metals, such as Pb and Hg, should be a priority for the general population. In addition, Se supplementation should also be considered with caution.

13.
Nat Biotechnol ; 40(9): 1403-1411, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35449414

RESUMO

Crop genetic improvement requires balancing complex tradeoffs caused by gene pleiotropy and linkage drags, as exemplified by IPA1 (Ideal Plant Architecture 1), a typical pleiotropic gene in rice that increases grains per panicle but reduces tillers. In this study, we identified a 54-base pair cis-regulatory region in IPA1 via a tiling-deletion-based CRISPR-Cas9 screen that, when deleted, resolves the tradeoff between grains per panicle and tiller number, leading to substantially enhanced grain yield per plant. Mechanistic studies revealed that the deleted fragment is a target site for the transcription factor An-1 to repress IPA1 expression in panicles and roots. Targeting gene regulatory regions should help dissect tradeoff effects and provide a rich source of targets for breeding complementary beneficial traits.


Assuntos
Oryza , Grão Comestível/genética , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo
14.
Cell Discov ; 8(1): 71, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882853

RESUMO

Chilling is a major abiotic stress harming rice development and productivity. The C-REPEAT BINDING FACTOR (CBF)-dependent transcriptional regulatory pathway plays a central role in cold stress and acclimation in Arabidopsis. In rice, several genes have been reported in conferring chilling tolerance, however, the chilling signaling in rice remains largely unknown. Here, we report the chilling-induced OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 6 (OsSAPK6)-IDEAL PLANT ARCHITECTURE 1 (IPA1)-OsCBF3 signal pathway in rice. Under chilling stress, OsSAPK6 could phosphorylate IPA1 and increase its stability. In turn, IPA1 could directly bind to the GTAC motif on the OsCBF3 promoter to elevate its expression. Genetic evidence showed that OsSAPK6, IPA1 and OsCBF3 were all positive regulators of rice chilling tolerance. The function of OsSAPK6 in chilling tolerance depended on IPA1, and overexpression of OsCBF3 could rescue the chilling-sensitive phenotype of ipa1 loss-of-function mutant. Moreover, the natural gain-of-function allele ipa1-2D could simultaneously enhance seedling chilling tolerance and increase grain yield. Taken together, our results revealed a chilling-induced OsSAPK6-IPA1-OsCBF signal cascade in rice, which shed new lights on chilling stress-tolerant rice breeding.

15.
J Genet Genomics ; 49(8): 766-775, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803541

RESUMO

Salt stress adversely affects plant growth, development, and crop yield. Rice (Oryza sativa L.) is one of the most salt-sensitive cereal crops, especially at the early seedling stage. Mitogen-activated protein kinase (MAPK/MPK) cascades have been shown to play critical roles in salt response in Arabidopsis. However, the roles of the MPK cascade signaling in rice salt response and substrates of OsMPK remain largely unknown. Here, we report that the salt-induced OsMPK4-Ideal Plant Architecture 1 (IPA1) signaling pathway regulates the salt tolerance in rice. Under salt stress, OsMPK4 could interact with IPA1 and phosphorylate IPA1 at Thr180, leading to degradation of IPA1. Genetic evidence shows that IPA1 is a negative regulator of salt tolerance in rice, whereas OsMPK4 promotes salt response in an IPA1-dependent manner. Taken together, our results uncover an OsMPK4-IPA1 signal cascade that modulates the salt stress response in rice and sheds new light on the breeding of salt-tolerant rice varieties.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Fosforilação , Melhoramento Vegetal , Proteínas de Plantas , Tolerância ao Sal , Plântula
16.
Mol Med Rep ; 24(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34080028

RESUMO

Dysregulation of long non­coding RNA (IncRNA) antisense non­coding RNA in the INK4 locus (ANRIL) is associated with the risk of myocardial infarction (MI). Therefore, the present study aimed to determine the mechanisms underlying this association, which is currently poorly understood, to the best of our knowledge. The current study used an in vitro myocardial ischemia and reperfusion (MI/R) model, in which H9c2 cardiomyocytes were exposed to hypoxia/reoxygenation (H/R), which demonstrated that ANRIL expression was downregulated and that ANRIL positively regulated sirtuin 1 (SIRT1) expression following H/R injury. Subsequently, it was demonstrated that ANRIL upregulated SIRT1 expression by sponging microRNA­181a (miR­181a). In addition, ANRIL overexpression reduced lactate dehydrogenase release and apoptosis of H9c2 cardiomyocytes exposed to H/R, indicating that ANRIL prevented H/R­induced cardiomyocyte injury. Moreover, both miR­181a overexpression and SIRT1 knockdown significantly decreased the protective effects of ANRIL on H/R­induced cardiomyocyte injury, thus demonstrating that SIRT1 upregulation via sponging miR­181a is a critical mechanism that mediates the function of ANRIL. These results provided a novel mechanistic insight into the role of ANRIL in H/R­injured cardiomyocytes and suggested that the ANRIL/miR­181a/SIRT1 axis may be a therapeutic target for reducing MI/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Animais , Apoptose/genética , Hipóxia Celular/genética , Linhagem Celular , Regulação para Baixo/genética , MicroRNAs/metabolismo , Modelos Biológicos , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Oxirredução , Ratos , Regulação para Cima/genética
17.
iScience ; 24(11): 103311, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34778730

RESUMO

Neurotransmitter receptors are involved in cancer progression. Among them, the heterodimeric GABAB receptor, activated by the main inhibitory neurotransmitter GABA, is composed of the transmembrane GABAB1 and GABAB2 subunits. The oncogenic role of the isoform GABAB1e (GB1e) containing only the extracellular domain of GABAB1 remains unclear. We revealed that GB1e is largely expressed in human breast cancer (BrCa) cell lines as well as in BrCa tissues where it is upregulated. Moreover, GB1e promoted the malignancy of BrCa cells both in vitro and in vivo. We propose that GB1e favors EGFR signaling by interacting with PTPN12 to disrupt the interaction between EGFR and PTPN12, and phosphorylation of Y230 and Y404 on GB1e is required in this process. Our data highlight that the GABBR1 gene through the expression of the GB1e isoform might play an important oncogenic role in BrCa and that GB1e is of interest for the treatment of some cancers.

18.
J Am Chem Soc ; 132(46): 16374-6, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21033664

RESUMO

A copper-catalyzed asymmetric intramolecular O-H insertion of ω-hydroxy-α-diazoesters has been accomplished by using chiral spiro bisoxazoline ligands. This highly enantioselective intramolecular O-H insertion reaction provides an efficient approach to a variety of synthetically important chiral 2-carboxy cyclic ethers with different ring sizes as well as substitution patterns.


Assuntos
Cobre/química , Éteres Cíclicos/química , Catálise , Hidrogênio/química , Estrutura Molecular , Oxazóis/química , Oxigênio/química , Estereoisomerismo
19.
Sci Bull (Beijing) ; 62(24): 1639-1648, 2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659383

RESUMO

SRWD1, a member of the WD40 protein subfamily, is induced by salt stress in rice and its homolog in barley can bind to GAMYB, implying that SRWD1 might be involved in plant defense against environmental stress and gibberellic acid (GA) signalings. In this study, we focused on the biological functions and regulation mechanisms of SRWD1 in rice. The results showed that SRWD1 expression was repressed by GA and induced by abscisic acid (ABA). Two WRKY-family transcription factors, OsWRKY45 and OsWRKY72, were found to regulate SRWD1 expression by directly binding to the W-box region in its promoter. Transient co-expression and yeast two-hybrid analyses showed that a DELLA protein strengthened the activation of OsWRKY45 and partly relieved the suppression of OsWRKY72 by binding to them. Interestingly, both SRWD1-overexpressing transgenic plants and SRWD1-knockout mutants showed dwarf phenotypes and resistance to Xanthomonas oryzae.

20.
Plant Signal Behav ; 12(3): e1257455, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28402719

RESUMO

Brassinosteroids (BRs) are a kind of plant hormones that regulate many important agronomic traits. Although the framework of the BR signaling pathway has been outlined, detailed working mechanisms at several steps of this pathway, especially at the BR receptor level, need to be further elucidated. Recently we have reported that a rice small G protein, OsPRA2, bound to the BR receptor OsBRI1 at the plasma membrane (PM) and inhibited its kinase activity and its interaction with the co-receptor OsBAK1, leading to a lower sensitivity to BR treatment and dephosphorylation of OsBZR1. In this follow-up study, we identified an OsPRA2-interacting protein through yeast 2 hybrid system, which is annotated as a C2-domain containing GTPase activating protein (OsGAP1). Overexpression of OsGAP1 in Arabidopsis resulted in a phenotype mimic to BR-deficiency, implying that the GTPase activity of OsPRA2 is also involved in regulating BR signaling. In addition, we observed that, besides colocalizing at the PM, OsPRA2 was also colocalized with OsBRI1 in small granules near PM, suggesting that the function of OsPRA2 in vesicle traffic may contribute to the regulation of OsBRI1.


Assuntos
Brassinosteroides/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA