Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Hepatology ; 77(6): 1929-1942, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921500

RESUMO

BACKGROUND AND AIMS: Gain-of-function (GOF) mutations of CTNNB1 and loss-of-function (LOF) mutations of AXIN1 are recurrent genetic alterations in hepatocellular carcinoma (HCC). We aim to investigate the functional contribution of Hippo/YAP/TAZ in GOF CTNNB1 or LOF AXIN1 mutant HCCs. APPROACH AND RESULTS: The requirement of YAP/TAZ in c-Met/ß-Catenin and c-Met/sgAxin1-driven HCC was analyzed using conditional Yap , Taz , and Yap;Taz knockout (KO) mice. Mechanisms of AXIN1 in regulating YAP/TAZ were investigated using AXIN1 mutated HCC cells. Hepatocyte-specific inducible TTR-CreER T2KO system was applied to evaluate the role of Yap;Taz during tumor progression. Cabozantinib and G007-LK combinational treatment were tested in vitro and in vivo . Nuclear YAP/TAZ was strongly induced in c-Met/sgAxin1 mouse HCC cells. Activation of Hippo via overexpression of Lats2 or concomitant deletion of Yap and Taz significantly inhibited c-Met/sgAxin1 driven HCC development, whereas the same approaches had mild effects in c-Met/ß-Catenin HCCs. YAP is the major Hippo effector in c-Met/ß-Catenin HCCs, and both YAP and TAZ are required for c-Met/sgAxin1-dependent hepatocarcinogenesis. Mechanistically, AXIN1 binds to YAP/TAZ in human HCC cells and regulates YAP/TAZ stability. Genetic deletion of YAP/TAZ suppresses already formed c-Met/sgAxin1 liver tumors, supporting the requirement of YAP/TAZ during tumor progression. Importantly, tankyrase inhibitor G007-LK, which targets Hippo and Wnt pathways, synergizes with cabozantinib, a c-MET inhibitor, leading to tumor regression in the c-Met/sgAxin1 HCC model. CONCLUSIONS: Our studies demonstrate that YAP/TAZ are major signaling molecules downstream of LOF AXIN1 mutant HCCs, and targeting YAP/TAZ is an effective treatment against AXIN1 mutant human HCCs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , beta Catenina/genética , Carcinogênese/genética , Mutação , Via de Sinalização Wnt/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína Axina/genética
2.
Int Arch Occup Environ Health ; 97(4): 461-471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429581

RESUMO

PURPOSE: Whether chronotype affects the health outcomes of night shift work populations is unknown. This study aimed to assess the influence of different chronotypes in the rotating night shift population on sleep status, mood, blood pressure (BP), and heart rate variability (HRV), as well as the circadian rhythm of BP and HRV. METHODS: A total of 208 rotating night shift workers were included. All participants completed structured questionnaires to assess chronotype, mood and sleep status. During their daily lives outside of the night shift, they underwent 24-hour Holter electrocardiogram monitoring and 24-hour ambulatory blood pressure monitoring. Day-time and night-time BP and BP dipping were obtained. Day-time and night-time HRV values (SDNN, RMSSD, LF, HF, LF nu, SD1, SD2 and SD2/SD1) were calculated and fitted to the cosine period curve. Three circandian parameters (mesor, amplitude and acrophase) were extracted to quantify the circadian rhythm of the HRV indices. RESULTS: Among all three groups, E-type showed more fatigue and sleepiness. In addition, E-type showed blunted diastolic BP dipping. Notably, E-type showed association with higher RMSSD, LF, HF and SD1 in the night time, and higher mesors of RMSSD and LF and amplitude of SD2/SD1 in circadian analysis. CONCLUSION: Chronotype is a factor affecting fatigue, sleepiness and cardiovascular circadian rhythms of rotating night shift workers. Chronotype should be taken into consideration for managing night-shift rotation to promote occupational health.


Assuntos
Monitorização Ambulatorial da Pressão Arterial , Cronotipo , Sindactilia , Humanos , Sonolência , Sono/fisiologia , Ritmo Circadiano/fisiologia , Fadiga , Tolerância ao Trabalho Programado/fisiologia
3.
Gastroenterology ; 163(2): 481-494, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35489428

RESUMO

BACKGROUND & AIMS: YES-associated protein (YAP) aberrant activation is implicated in intrahepatic cholangiocarcinoma (iCCA). Transcriptional enhanced associate domain (TEAD)-mediated transcriptional regulation is the primary signaling event downstream of YAP. The role of Wnt/ß-Catenin signaling in cholangiocarcinogenesis remains undetermined. Here, we investigated the possible molecular interplay between YAP and ß-Catenin cascades in iCCA. METHODS: Activated AKT (Myr-Akt) was coexpressed with YAP (YapS127A) or Tead2VP16 via hydrodynamic tail vein injection into mouse livers. Tumor growth was monitored, and liver tissues were collected and analyzed using histopathologic and molecular analysis. YAP, ß-Catenin, and TEAD interaction in iCCAs was investigated through coimmunoprecipitation. Conditional Ctnnb1 knockout mice were used to determine ß-Catenin function in murine iCCA models. RNA sequencing was performed to analyze the genes regulated by YAP and/or ß-Catenin. Immunostaining of total and nonphosphorylated/activated ß-Catenin staining was performed in mouse and human iCCAs. RESULTS: We discovered that TEAD factors are required for YAP-dependent iCCA development. However, transcriptional activation of TEADs did not fully recapitulate YAP's activities in promoting cholangiocarcinogenesis. Notably, ß-Catenin physically interacted with YAP in human and mouse iCCA. Ctnnb1 ablation strongly suppressed human iCCA cell growth and Yap-dependent cholangiocarcinogenesis. Furthermore, RNA-sequencing analysis revealed that YAP/ transcriptional coactivator with PDZ-binding motif (TAZ) regulate a set of genes significantly overlapping with those controlled by ß-Catenin. Importantly, activated/nonphosphorylated ß-Catenin was detected in more than 80% of human iCCAs. CONCLUSION: YAP induces cholangiocarcinogenesis via TEAD-dependent transcriptional activation and interaction with ß-Catenin. ß-Catenin binds to YAP in iCCA and is required for YAP full transcriptional activity, revealing the functional crosstalk between YAP and ß-Catenin pathways in cholangiocarcinogenesis.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteínas de Sinalização YAP , beta Catenina , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Carcinogênese , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
J Hepatol ; 76(1): 123-134, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464659

RESUMO

BACKGROUND & AIMS: Mounting evidence implicates the Hippo downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) in hepatocellular carcinoma (HCC). We investigated the functional contribution of YAP and/or TAZ to c-MYC-induced liver tumor development. METHODS: The requirement for YAP and/or TAZ in c-Myc-driven hepatocarcinogenesis was analyzed using conditional Yap, Taz, and Yap;Taz knockout (KO) mice. An hepatocyte-specific inducible TTR-CreERT2 KO system was applied to evaluate the role of YAP and TAZ during tumor progression. Expression patterns of YAP, TAZ, c-MYC, and BCL2L12 were analyzed in human HCC samples. RESULTS: We found that the Hippo cascade is inactivated in c-Myc-induced mouse HCC. Intriguingly, TAZ mRNA levels and activation status correlated with c-MYC activity in human and mouse HCC, but YAP mRNA levels did not. We demonstrated that TAZ is a direct transcriptional target of c-MYC. In c-Myc induced murine HCCs, ablation of Taz, but not Yap, completely prevented tumor development. Mechanistically, TAZ was required to avoid c-Myc-induced hepatocyte apoptosis during tumor initiation. The anti-apoptotic BCL2L12 gene was identified as a novel target regulated specifically by YAP/TAZ, whose silencing strongly suppressed c-Myc-driven murine hepatocarcinogenesis. In c-Myc murine HCC lesions, conditional knockout of Taz, but not Yap, led to tumor regression, supporting the requirement of TAZ for c-Myc-driven HCC progression. CONCLUSIONS: TAZ is a pivotal player at the crossroad between the c-MYC and Hippo pathways in HCC. Targeting TAZ might be beneficial for the treatment of patients with HCC and c-MYC activation. LAY SUMMARY: The identification of novel treatment targets and approaches for patients with hepatocellular carcinoma is crucial to improve survival outcomes. We identified TAZ as a transcriptional target of c-MYC which plays a critical role in c-MYC-dependent hepatocarcinogenesis. TAZ could potentially be targeted for the treatment of patients with c-MYC-driven hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/efeitos adversos , Proteínas de Sinalização YAP/efeitos adversos , Animais , Carcinoma Hepatocelular/fisiopatologia , Proteínas de Ligação a DNA/efeitos adversos , Proteínas de Ligação a DNA/análise , Modelos Animais de Doenças , Redes Reguladoras de Genes/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologia , Camundongos , Camundongos Knockout , Estatísticas não Paramétricas , Fatores de Transcrição/efeitos adversos , Fatores de Transcrição/análise , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Proteínas de Sinalização YAP/genética
5.
Am J Pathol ; 191(5): 930-946, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545120

RESUMO

Hepatocellular carcinoma (HCC) and hepatoblastoma are the major types of primary liver cancer in adulthood and childhood, respectively. Wnt/ß-catenin signaling deregulation is one of the most frequent genetic events in hepatocarcinogenesis. APC regulator of WNT signaling pathway (APC) encodes an inhibitor of the Wnt cascade and acts as a tumor suppressor. Germline defects of the APC gene lead to familial adenomatous polyposis, and its somatic mutations occur in multiple tumor types. However, the contribution of APC in hepatocarcinogenesis remains unclear. Therefore, APC mutations and expression patterns were examined in human HCC and hepatoblastoma samples. Whether loss of Apc alone or in cooperation with other oncogenes triggers liver tumor development in vivo was also investigated. sgApc alone could not drive liver tumor formation, but synergized with activated oncogenes (YapS127A, TazS89A, and c-Met) to induce hepatocarcinogenesis. Mechanistically, Apc deletion induced the activation of ß-catenin and its downstream targets in mouse liver tumors. Furthermore, Ctnnb1 ablation or TCF4-mediated transcription blockade completely prevented liver tumor formation, indicating the requirement of a functional ß-catenin pathway for loss of Apc-driven hepatocarcinogenesis. This study shows that a subset of HCC patients with loss-of-function APC mutations might benefit from therapeutic strategies targeting the Wnt/ß-catenin pathway.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/genética , Carcinoma Hepatocelular/genética , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Via de Sinalização Wnt/genética , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Carcinogênese , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Hepatoblastoma/patologia , Humanos , Fígado/patologia , Neoplasias Hepáticas/patologia , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oncogenes
6.
Hepatology ; 74(1): 248-263, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368437

RESUMO

BACKGROUND AND AIMS: Mothers against decapentaplegic homolog (SMAD) 7 is an antagonist of TGF-ß signaling. In the present investigation, we sought to determine the relevance of SMAD7 in liver carcinogenesis using in vitro and in vivo approaches. APPROACH AND RESULTS: We found that SMAD7 is up-regulated in a subset of human HCC samples with poor prognosis. Gene set enrichment analysis revealed that SMAD7 expression correlates with activated yes-associated protein (YAP)/NOTCH pathway and cholangiocellular signature genes in HCCs. These findings were substantiated in human HCC cell lines. In vivo, overexpression of Smad7 alone was unable to initiate HCC development, but it significantly accelerated c-Myc/myeloid cell leukemia 1 (MCL1)-induced mouse HCC formation. Consistent with human HCC data, c-Myc/MCL1/Smad7 liver tumors exhibited an increased cholangiocellular gene expression along with Yap/Notch activation and epithelial-mesenchymal transition (EMT). Intriguingly, blocking of the Notch signaling did not affect c-Myc/MCL1/Smad7-induced hepatocarcinogenesis while preventing cholangiocellular signature expression and EMT, whereas ablation of Yap abolished c-Myc/MCL1/Smad7-driven HCC formation. In mice overexpressing a myristoylated/activated form of AKT, coexpression of SMAD7 accelerated carcinogenesis and switched the phenotype from HCC to intrahepatic cholangiocarcinoma (iCCA) lesions. In human iCCA, SMAD7 expression was robustly up-regulated, especially in the most aggressive tumors, and directly correlated with the levels of YAP/NOTCH targets as well as cholangiocellular and EMT markers. CONCLUSIONS: The present data indicate that SMAD7 contributes to liver carcinogenesis by activating the YAP/NOTCH signaling cascade and inducing a cholangiocellular and EMT signature.


Assuntos
Neoplasias dos Ductos Biliares/genética , Carcinoma Hepatocelular/genética , Colangiocarcinoma/genética , Neoplasias Hepáticas/genética , Proteína Smad7/genética , Idoso , Animais , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/patologia , Carcinogênese/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Linhagem Celular Tumoral , Colangiocarcinoma/mortalidade , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Hepatectomia , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Receptores Notch/metabolismo , Proteína Smad7/metabolismo , Regulação para Cima , Proteínas de Sinalização YAP/metabolismo
7.
Langmuir ; 38(7): 2314-2326, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35139309

RESUMO

Improving the e- and h+ separation efficiency and promoting the production of more radicals is the key to improving the degradation efficiency of catalytic degradation of antibiotics. On the other hand, intermediate analysis of antibiotics in the dark adsorption and light irradiation process is very important to clarify the entire antibiotic degradation pathway. Here, the La2NiMnO6 (LNMO) catalyst was prepared by the sol-gel method and the calcination method. By changing the calcination temperature (800, 900, and 1000 °C), the LNMO-based catalysts were successfully formed, abbreviated as L-800, L-900, and L-1000. XPS measurements demonstrated the presence of Mn4+, Mn3+, Mn2+, and oxygen vacancies (OVs) in the LNMO-based catalysts. Analysis of PL, PC, EIS, and TR-PL demonstrated that L-900 had the highest separation efficiency and fastest carrier mobility. The LNMO-based catalysts were used to degrade tetracycline (TC). With the optimized catalyst L-900, the decomposition rate of TC reached 99.57% in 120 min. The entire TC degradation pathway was analyzed according to LC-MS measurements. Radical trap experiments and ESR technology revealed that the synergistic effect of Mn4+/Mn3+, Mn4+/Mn2+, and OVs not only effectively separated e- and h+ but also facilitated the formation of superoxide radicals (•O2-) to accelerate TC degradation. Radicals •OH, h+, and •O2- all contributed to TC deterioration in increasing order of importance. In addition, XPS measurements of the L-900 catalyst before and after use indicated that Mn4+/Mn3+, Mn4+/Mn2+, and OVs were not reactants but mediators of e- and h+. Finally, the mechanism of TC degradation with the LNMO-based catalysts was discussed. This work provided new material for TC degradation in the wastewater.


Assuntos
Oxigênio , Tetraciclina , Antibacterianos , Catálise , Oxirredução
8.
Gut ; 70(9): 1746-1757, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33144318

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with limited treatment options. Cabozantinib, an orally bioavailable multikinase inhibitor is now approved by Food and Drug Administration (FDA) for HCC patients. We evaluated the therapeutic efficacy of cabozantinib, either alone or in combination, in vitro and in vivo. DESIGN: Human HCC cell lines and HCC mouse models were used to assess the therapeutic efficacy and targeted molecular pathways of cabozantinib, either alone or in combination with the pan-mTOR inhibitor MLN0128 or the checkpoint inhibitor anti-PD-L1 antibody. RESULTS: Cabozantinib treatment led to stable disease in c-Met/ß-catenin and Akt/c-Met mouse HCC while possessing limited efficacy on Akt/Ras and c-Myc liver tumours. Importantly, cabozantinib effectively inhibited c-MET and ERK activity, leading to decreased PKM2 and increased p21 expression in HCC cells and in c-Met/ß-catenin and Akt/c-Met HCC. However, cabozantinib was ineffective in inhibiting the Akt/mTOR cascade. Intriguingly, a strong inhibition of angiogenesis by cabozantinib occurred regardless of the oncogenic drivers. However, cabozantinib had limited impact on other tumour microenvironment parameters, including tumour infiltrating T cells, and did not induce programmed death-ligand 1 (PD-L1) expression. Combining cabozantinib with MLN0128 led to tumour regression in c-Met/ß-catenin mice. In contrast, combined treatment with cabozantinib and the checkpoint inhibitor anti-PD-L1 antibody did not provide any additional therapeutic benefit in the four mouse HCC models tested. CONCLUSION: c-MET/ERK/p21/PKM2 cascade and VEGFR2-induced angiogenesis are the primary targets of cabozantinib in HCC treatment. Combination therapies with cabozantinib and mTOR inhibitors may be effective against human HCC.


Assuntos
Anilidas/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Piridinas/uso terapêutico , Anilidas/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Benzoxazóis/administração & dosagem , Benzoxazóis/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Pirimidinas/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos
9.
J Hepatol ; 75(4): 888-899, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34052254

RESUMO

BACKGROUND & AIMS: Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is upregulated in many tumor types and is a promising target for cancer therapy. Herein, we elucidated the functional role of FAK in intrahepatic cholangiocarcinoma (iCCA) development and progression. METHODS: Expression levels and activation status of FAK were determined in human iCCA samples. The functional contribution of FAK to Akt/YAP murine iCCA initiation and progression was investigated using conditional Fak knockout mice and constitutive Cre or inducible Cre mice, respectively. The oncogenic potential of FAK was further examined via overexpression of FAK in mice. In vitro cell line studies and in vivo drug treatment were applied to address the therapeutic potential of targeting FAK for iCCA treatment. RESULTS: FAK was ubiquitously upregulated and activated in iCCA lesions. Ablation of FAK strongly delayed Akt/YAP-driven mouse iCCA initiation. FAK overexpression synergized with activated AKT to promote iCCA development and accelerated Akt/Jag1-driven cholangiocarcinogenesis. Mechanistically, FAK was required for YAP(Y357) phosphorylation, supporting the role of FAK as a central YAP regulator in iCCA. Significantly, ablation of FAK after Akt/YAP-dependent iCCA formation strongly suppressed tumor progression in mice. Furthermore, a remarkable iCCA growth reduction was achieved when a FAK inhibitor and palbociclib, a CDK4/6 inhibitor, were administered simultaneously in human iCCA cell lines and Akt/YAP mice. CONCLUSIONS: FAK activation contributes to the initiation and progression of iCCA by inducing the YAP proto-oncogene. Targeting FAK, either alone or in combination with anti-CDK4/6 inhibitors, may be an effective strategy for iCCA treatment. LAY SUMMARY: We found that the protein FAK (focal adhesion kinase) is upregulated and activated in human and mouse intrahepatic cholangiocarcinoma samples. FAK promotes intrahepatic cholangiocarcinoma development, whereas deletion of FAK strongly suppresses its initiation and progression. Combined FAK and CDK4/6 inhibitor treatment had a strong anti-cancer effect in in vitro and in vivo models. This combination therapy might represent a valuable and novel treatment against human intrahepatic cholangiocarcinoma.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/efeitos adversos , Proteínas de Sinalização YAP/efeitos dos fármacos , Animais , California , Colangiocarcinoma/etiologia , Estudos de Coortes , Modelos Animais de Doenças , Proteína-Tirosina Quinases de Adesão Focal/administração & dosagem , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Sinalização YAP/administração & dosagem
10.
J Hepatol ; 75(1): 120-131, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33577921

RESUMO

BACKGROUND & AIMS: Gain of function (GOF) mutations in the CTNNB1 gene are one of the most frequent genetic events in hepatocellular carcinoma (HCC). T-box transcription factor 3 (TBX3) is a liver-specific target of the Wnt/ß-catenin pathway and thought to be an oncogene mediating activated ß-catenin-driven HCC formation. METHODS: We evaluated the expression pattern of TBX3 in human HCC specimens. Tbx3 was conditionally knocked out in murine HCC models by hydrodynamic tail vein injection of Cre together with c-Met and ΔN90-ß-catenin (c-Met/ß-catenin) in Tbx3flox/flox mice. TBX3 was overexpressed in human HCC cell lines to investigate the functions of TBX3 in vitro. RESULTS: A bimodal expression pattern of TBX3 in human HCC samples was detected: high expression of TBX3 in GOF CTNNB1 HCC and downregulation of TBX3 in non-CTNNB1 mutant tumors. High expression of TBX3 was associated with increased differentiation and decreased expression signatures of tumor growth. Using Tbx3flox/flox mice, we found that ablation of Tbx3 significantly accelerates c-Met/ß-catenin-driven HCC formation. Moreover, Tbx3(-) HCC demonstrated increased YAP/TAZ activity. The accelerated tumor growth induced by loss of TBX3 in c-Met/ß-catenin mouse HCC was successfully prevented by overexpression of LATS2, which inhibited YAP/TAZ activity. In human HCC cell lines, overexpression of TBX3 inhibited HCC cell growth as well as YAP/TAZ activation. A negative correlation between TBX3 and YAP/TAZ target genes was observed in human HCC samples. Mechanistically, phospholipase D1 (PLD1), a known positive regulator of YAP/TAZ, was identified as a novel transcriptional target repressed by TBX3. CONCLUSION: Our study suggests that TBX3 is induced by GOF CTNNB1 mutants and suppresses HCC growth by inactivating PLD1, thus leading to the inhibition of YAP/TAZ oncogenes. LAY SUMMARY: TBX3 is a liver-specific target of the Wnt/ß-catenin pathway and thought to be an oncogene in promoting liver cancer development. Herein, we demonstrate that TBX3 is in fact a tumor suppressor gene that restricts liver tumor growth. Strategies which increase TBX3 expression and/or activities may be effective for HCC treatment.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular , Neoplasias Hepáticas , beta Catenina , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Descoberta de Drogas , Mutação com Ganho de Função , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor/fisiologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Knockout , Fosfolipase D/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
11.
Am J Pathol ; 190(7): 1414-1426, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32275903

RESUMO

Cholestatic liver injury may lead to a series of hepatobiliary syndromes, which can progress to cirrhosis and impaired liver regeneration, eventually resulting in liver-related death. Mammalian target of rapamycin complex 2 (mTORC2) is a major regulator of liver metabolism and tumor development. However, the role of mTORC2 signaling in cholestatic liver injury has not been characterized to date. In this study, we generated liver-specific Rictor knockout mice to block the mTORC2 signaling pathway. Mice were treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to induce cholestatic liver injury. DDC feeding induced cholestatic liver injury and ductular reaction as well as activation of the mTORC2/Akt signaling pathway in wild-type mice. Loss of mTORC2 led to significantly decreased oval cell expansion after DDC feeding. Mechanistically, this phenotype was independent of mTORC1/fatty acid synthase cascade (Fasn) or yes-associated protein (Yap) signaling. Notch pathway was instead strongly inhibited during DDC-induced cholestatic liver injury in liver-specific Rictor knockout mice. Furthermore, mTORC2 deficiency in adult hepatocytes did not inhibit ductular reaction in this cholestatic live injury mouse model. Our results indicated that mTORC2 signaling effectively regulates liver regeneration by inducing oval cell proliferation. Liver progenitor cells or bile duct cells, rather than mature hepatocytes, would be the major source of ductular reaction in DDC-induced cholestatic liver injury.


Assuntos
Colestase/metabolismo , Hepatopatias/metabolismo , Regeneração Hepática/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais/fisiologia , Animais , Ductos Biliares/metabolismo , Colestase/fisiopatologia , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatopatias/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco/metabolismo
12.
Am J Pathol ; 190(4): 817-829, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035060

RESUMO

Liver regeneration is a fundamental biological process required for sustaining body homeostasis and restoring liver function after injury. Emerging evidence demonstrates that cytokines, growth factors, and multiple signaling pathways contribute to liver regeneration. Mammalian target of rapamycin complex 2 (mTORC2) regulates cell metabolism, proliferation and survival. The major substrates for mTORC2 are the AGC family members of kinases, including AKT, SGK, and PKC-α. We investigated the functional roles of mTORC2 during liver regeneration. Partial hepatectomy (PHx) was performed in liver-specific Rictor (the pivotal unit of mTORC2 complex) knockout (RictorLKO) and wild-type (Rictorfl/fl) mice. Rictor-deficient mice were found to be more intolerant to PHx and displayed higher mortality after PHx. Mechanistically, loss of Rictor resulted in decreased Akt phosphorylation, leading to a delay in hepatocyte proliferation and lipid droplets formation along liver regeneration. Overall, these results indicate an essential role of the mTORC2 signaling pathway during liver regeneration.


Assuntos
Proliferação de Células , Hepatectomia , Regeneração Hepática , Fígado/citologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/fisiologia , Animais , Pontos de Checagem do Ciclo Celular , Feminino , Lipídeos/análise , Fígado/metabolismo , Fígado/cirurgia , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Transdução de Sinais
13.
Mol Cell Biochem ; 476(1): 493-506, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33000352

RESUMO

Mitochondria have various cellular functions, including ATP synthesis, calcium homeostasis, cell senescence, and death. Mitochondrial dysfunction has been identified in a variety of disorders correlated with human health. Among the many underlying mechanisms of mitochondrial dysfunction, the opening up of the mitochondrial permeability transition pore (mPTP) is one that has drawn increasing interest in recent years. It plays an important role in apoptosis and necrosis; however, the molecular structure and function of the mPTP have still not been fully elucidated. In recent years, the abnormal opening up of the mPTP has been implicated in the development and pathogenesis of diverse diseases including ischemia/reperfusion injury (IRI), neurodegenerative disorders, tumors, and chronic obstructive pulmonary disease (COPD). This review provides a systematic introduction to the possible molecular makeup of the mPTP and summarizes the mitochondrial dysfunction-correlated diseases and highlights possible underlying mechanisms. Since the mPTP is an important target in mitochondrial dysfunction, this review also summarizes potential treatments, which may be used to inhibit pore opening up via the molecules composing mPTP complexes, thus suppressing the progression of mitochondrial dysfunction-related diseases.


Assuntos
Trifosfato de Adenosina/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/terapia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Complexos de ATP Sintetase/metabolismo , Animais , Ânions , Apoptose , Transporte Biológico , Peptidil-Prolil Isomerase F/metabolismo , Humanos , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , Necrose , Doenças Neurodegenerativas/metabolismo , Fosfatos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de GABA/metabolismo , Traumatismo por Reperfusão
14.
Gut ; 69(1): 177-186, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954949

RESUMO

OBJECTIVE: Increased de novo fatty acid (FA) synthesis and cholesterol biosynthesis have been independently described in many tumour types, including hepatocellular carcinoma (HCC). DESIGN: We investigated the functional contribution of fatty acid synthase (Fasn)-mediated de novo FA synthesis in a murine HCC model induced by loss of Pten and overexpression of c-Met (sgPten/c-Met) using liver-specific Fasn knockout mice. Expression arrays and lipidomic analysis were performed to characterise the global gene expression and lipid profiles, respectively, of sgPten/c-Met HCC from wild-type and Fasn knockout mice. Human HCC cell lines were used for in vitro studies. RESULTS: Ablation of Fasn significantly delayed sgPten/c-Met-driven hepatocarcinogenesis in mice. However, eventually, HCC emerged in Fasn knockout mice. Comparative genomic and lipidomic analyses revealed the upregulation of genes involved in cholesterol biosynthesis, as well as decreased triglyceride levels and increased cholesterol esters, in HCC from these mice. Mechanistically, loss of Fasn promoted nuclear localisation and activation of sterol regulatory element binding protein 2 (Srebp2), which triggered cholesterogenesis. Blocking cholesterol synthesis via the dominant negative form of Srebp2 (dnSrebp2) completely prevented sgPten/c-Met-driven hepatocarcinogenesis in Fasn knockout mice. Similarly, silencing of FASN resulted in increased SREBP2 activation and hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase (HMGCR) expression in human HCC cell lines. Concomitant inhibition of FASN-mediated FA synthesis and HMGCR-driven cholesterol production was highly detrimental for HCC cell growth in culture. CONCLUSION: Our study uncovers a novel functional crosstalk between aberrant lipogenesis and cholesterol biosynthesis pathways in hepatocarcinogenesis, whose concomitant inhibition might represent a therapeutic option for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Colesterol/biossíntese , Ácido Graxo Sintase Tipo I/metabolismo , Ácidos Graxos/biossíntese , Neoplasias Hepáticas/metabolismo , Animais , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Ácido Graxo Sintase Tipo I/genética , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Genômica , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Lipidômica , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Transcriptoma
15.
Am J Pathol ; 189(5): 1077-1090, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30794805

RESUMO

Hepatoblastoma (HB) is the most common type of pediatric liver cancer. Activation of yes-associated protein (YAP) has been implicated in HB molecular pathogenesis. The transcriptional co-activator Yap regulates downstream gene expression through interaction with the TEA domain (TEAD) proteins. Nonetheless, YAP also displays functions that are independent of its transcriptional activity. The underlying molecular mechanisms by which Yap promotes HB development remain elusive. In the current study, we demonstrated that blocking TEAD function via the dominant-negative form of TEAD2 abolishes Yap-driven HB formation in mice and restrains human HB growth in vitro. When TEAD2 DNA-binding domain was fused with virus protein 16 transcriptional activation domain, it synergized with activated ß-catenin to promote HB formation in vivo. Among TEAD genes, silencing of TEAD4 consistently inhibited tumor growth and Yap target gene expression in HB cell lines. Furthermore, TEAD4 mRNA expression was significantly higher in human HB lesions when compared with corresponding nontumorous liver tissues. Human HB specimens also exhibited strong nuclear immunoreactivity for TEAD4. Altogether, data demonstrate that TEAD-mediated transcriptional activity is both sufficient and necessary for Yap-driven HB development. TEAD4 is the major TEAD isoform and Yap partner in human HB. Targeting TEAD4 may represent an effective treatment option for human HB.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/secundário , Proteínas Musculares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Proteínas de Ligação a DNA/genética , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Proteínas Musculares/genética , Prognóstico , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
16.
Hepatology ; 70(6): 2003-2017, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30737831

RESUMO

Inactivating mutations of axis inhibition protein 1 (AXIN1), a negative regulator of the Wnt/ß-Catenin cascade, are among the common genetic events in human hepatocellular carcinoma (HCC), affecting approximately 10% of cases. In the present manuscript, we sought to define the genetic crosstalk between Axin1 mutants and Wnt/ß-catenin as well as Notch signaling cascades along hepatocarcinogenesis. We discovered that c-MET activation and AXIN1 mutations occur concomitantly in ~3%-5% of human HCC samples. Subsequently, we generated a murine HCC model by means of CRISPR/Cas9-based gene deletion of Axin1 (sgAxin1) in combination with transposon-based expression of c-Met in the mouse liver (c-Met/sgAxin1). Global gene expression analysis of mouse normal liver, HCCs induced by c-Met/sgAxin1, and HCCs induced by c-Met/∆N90-ß-Catenin revealed activation of the Wnt/ß-Catenin and Notch signaling in c-Met/sgAxin1 HCCs. However, only a few of the canonical Wnt/ß-Catenin target genes were induced in c-Met/sgAxin1 HCC when compared with corresponding lesions from c-Met/∆N90-ß-Catenin mice. To study whether endogenous ß-Catenin is required for c-Met/sgAxin1-driven HCC development, we expressed c-Met/sgAxin1 in liver-specific Ctnnb1 null mice, which completely prevented HCC development. Consistently, in AXIN1 mutant or null human HCC cell lines, silencing of ß-Catenin strongly inhibited cell proliferation. In striking contrast, blocking the Notch cascade through expression of either the dominant negative form of the recombinant signal-binding protein for immunoglobulin kappa J region (RBP-J) or the ablation of Notch2 did not significantly affect c-Met/sgAxin1-driven hepatocarcinogenesis. Conclusion: We demonstrated here that loss of Axin1 cooperates with c-Met to induce HCC in mice, in a ß-Catenin signaling-dependent but Notch cascade-independent way.


Assuntos
Proteína Axina/fisiologia , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas Experimentais/etiologia , Receptores Notch/fisiologia , beta Catenina/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-met/fisiologia , Via de Sinalização Wnt/fisiologia
17.
J Hepatol ; 71(4): 742-752, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31195063

RESUMO

BACKGROUND & AIMS: The ubiquitin ligase F-box and WD repeat domain-containing 7 (FBXW7) is recognized as a tumor suppressor in many cancer types due to its ability to promote the degradation of numerous oncogenic target proteins. Herein, we aimed to elucidate its role in intrahepatic cholangiocarcinoma (iCCA). METHODS: Herein, we first confirmed that FBXW7 gene expression was reduced in human iCCA specimens. To identify the molecular mechanisms by which FBXW7 dysfunction promotes cholangiocarcinogenesis, we generated a mouse model by hydrodynamic tail vein injection of Fbxw7ΔF, a dominant negative form of Fbxw7, either alone or in association with an activated/myristylated form of AKT (myr-AKT). We then confirmed the role of c-MYC in human iCCA cell lines and its relationship to FBXW7 expression in human iCCA specimens. RESULTS: FBXW7 mRNA expression is almost ubiquitously downregulated in human iCCA specimens. While forced overexpression of Fbxw7ΔF alone did not induce any appreciable abnormality in the mouse liver, co-expression with AKT triggered cholangiocarcinogenesis and mice had to be euthanized by 15 weeks post-injection. At the molecular level, a strong induction of Fbxw7 canonical targets, including Yap, Notch2, and c-Myc oncoproteins, was detected. However, only c-MYC was consistently confirmed as a FBXW7 target in human CCA cell lines. Most importantly, selected ablation of c-Myc completely impaired iCCA formation in AKT/Fbxw7ΔF mice, whereas deletion of either Yap or Notch2 only delayed tumorigenesis in the same model. In human iCCA specimens, an inverse correlation between the expression levels of FBXW7 and c-MYC transcriptional activity was observed. CONCLUSIONS: Downregulation of FBXW7 is ubiquitous in human iCCA and cooperates with AKT to induce cholangiocarcinogenesis in mice via c-Myc-dependent mechanisms. Targeting c-MYC might represent an innovative therapy against iCCA exhibiting low FBXW7 expression. LAY SUMMARY: There is mounting evidence that FBXW7 functions as a tumor suppressor in many cancer types, including intrahepatic cholangiocarcinoma, through its ability to promote the degradation of numerous oncoproteins. Herein, we have shown that the low expression of FBXW7 is ubiquitous in human cholangiocarcinoma specimens. This low expression is correlated with increased c-MYC activity, leading to tumorigenesis. Our findings suggest that targeting c-MYC might be an effective treatment for intrahepatic cholangiocarcinoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colangiocarcinoma , Proteína 7 com Repetições F-Box-WD/metabolismo , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Notch2/metabolismo , Animais , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Modelos Animais de Doenças , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Terapia de Alvo Molecular , Transdução de Sinais , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
19.
J Hepatol ; 67(6): 1194-1203, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28733220

RESUMO

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (ICC) is a lethal malignancy without effective treatment options. MLN0128, a second generation pan-mTOR inhibitor, shows efficacy for multiple tumor types. We evaluated the therapeutic potential of MLN0128 vs. gemcitabine/oxaliplatin in a novel ICC mouse model. METHODS: We established a novel ICC mouse model via hydrodynamic transfection of activated forms of AKT (myr-AKT) and Yap (YapS127A) protooncogenes (that will be referred to as AKT/YapS127A). Genetic approaches were applied to study the requirement of mTORC1 and mTORC2 in mediating AKT/YapS127A driven tumorigenesis. Gemcitabine/oxaliplatin and MLN0128 were administered in AKT/YapS127A tumor-bearing mice to study their anti-tumor efficacy in vivo. Multiple human ICC cell lines were used for in vitro experiments. Hematoxylin and eosin staining, immunohistochemistry and immunoblotting were applied for the characterization and mechanistic study. RESULTS: Co-expression of myr-AKT and YapS127A promoted ICC development in mice. Both mTORC1 and mTORC2 complexes were required for AKT/YapS127A ICC development. Gemcitabine/oxaliplatin had limited efficacy in treating late stage AKT/YapS127A ICC. In contrast, partial tumor regression was achieved when MLN0128 was applied in the late stage of AKT/YapS127A cholangiocarcinogenesis. Furthermore, when MLN0128 was administered in the early stage of AKT/YapS127A carcinogenesis, it led to disease stabilization. Mechanistically, MLN0128 efficiently inhibited AKT/mTOR signaling both in vivo and in vitro, inducing strong ICC cell apoptosis and only marginally affecting proliferation. CONCLUSIONS: This study suggests that mTOR kinase inhibitors may be beneficial for the treatment of ICC, even in tumors that are resistant to standard of care chemotherapeutics, such as gemcitabine/oxaliplatin-based regimens, especially in the subset of tumors exhibiting activated AKT/mTOR cascade. Lay summary: We established a novel mouse model of intrahepatic cholangiocarcinoma (ICC). Using this new preclinical model, we evaluated the therapeutic potential of mTOR inhibitor MLN0128 vs. gemcitabine/oxaliplatin (the standard chemotherapy for ICC treatment). Our study shows the anti-neoplastic potential of MLN0128, suggesting that it may be superior to gemcitabine/oxaliplatin-based chemotherapy for the treatment of ICC, especially in the tumors exhibiting activated AKT/mTOR cascade.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Neoplasias dos Ductos Biliares/etiologia , Neoplasias dos Ductos Biliares/patologia , Proteínas de Ciclo Celular , Colangiocarcinoma/etiologia , Colangiocarcinoma/patologia , Feminino , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/fisiologia , Camundongos , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteínas de Sinalização YAP
20.
Liver Int ; 37(1): 80-89, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27264722

RESUMO

BACKGROUND & AIMS: Although it is well established that fatty acids (FA) are indispensable for the proliferation and survival of cancer cells in hepatocellular carcinoma (HCC), inhibition of Fatty Acid Synthase (FASN) cannot completely repress HCC cell growth in culture. Thus, we hypothesized that uptake of exogenous FA by cancer cells might play an important role in the development and progression of HCC. Lipoprotein lipase (LPL) is the enzyme that catalyses the hydrolysis of triglycerides into free fatty acids (FFA) and increases the cellular uptake of FA. METHODS: We used immunohistochemistry and quantitative reverse transcription real-time polymerase chain reaction to evaluate LPL expression in human and mouse HCC samples. Using lipoprotein-deficient medium as well as siRNAs against LPL and/or FASN, we investigated whether human HCC cells depend on both endogenous and exogenous fatty acids for survival in vitro. RESULTS: We found that LPL is upregulated in mouse and human HCC samples. High expression of LPL in human HCC samples is associated with poor prognosis. In HCC cell lines, silencing of FASN or LPL or culturing the cells in lipoprotein-deficient medium significantly decreased cell proliferation. Importantly, when FASN suppression was coupled to concomitant LPL depletion, the growth restraint of cell lines was further augmented. CONCLUSIONS: The present study strongly suggests that both de novo synthetized and exogenous FA play a major role along hepatocarcinogenesis. Thus, combined suppression of LPL and FASN might be highly beneficial for the treatment of human HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Ácidos Graxos/metabolismo , Lipase Lipoproteica/metabolismo , Neoplasias Hepáticas/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácido Graxo Sintase Tipo I/genética , Humanos , Lipase Lipoproteica/genética , Neoplasias Hepáticas/patologia , Camundongos , Análise Multivariada , Modelos de Riscos Proporcionais , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA