RESUMO
Pseudomonas aeruginosa is a highly pathogenic bacterium known for its ability to sense and coordinate the production of virulence factors in response to host immune responses. However, the regulatory mechanisms underlying this process have remained largely elusive. In this study, we investigate the two-component system CprRS in P. aeruginosa and unveil the crucial role of the sensor protein CprS in sensing the human host defense peptide LL-37, thereby modulating bacterial virulence. We demonstrate that CprS acts as a phosphatase in the presence of LL-37, leading to the phosphorylation and activation of the response regulator CprR. The results prove that CprR directly recognizes a specific sequence within the promoter region of the HigBA toxin-antitoxin system, resulting in enhanced expression of the toxin HigB. Importantly, LL-37-induced HigB expression promotes the production of type III secretion system effectors, leading to reduced expression of proinflammatory cytokines and increased cytotoxicity towards macrophages. Moreover, mutations in cprS or cprR significantly impair bacterial survival in both macrophage and insect infection models. This study uncovers the regulatory mechanism of the CprRS system, enabling P. aeruginosa to detect and respond to human innate immune responses while maintaining a balanced virulence gene expression profile. Additionally, this study provides new evidence and insights into the complex regulatory system of T3SS in P. aeruginosa within the host environment, contributing to a better understanding of host-microbe communication and the development of novel strategies to combat bacterial infections.
Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Virulência , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão GênicaRESUMO
The regulation of carbon metabolism and virulence is critical for the rapid adaptation of pathogenic bacteria to host conditions. In Pseudomonas aeruginosa, RccR is a transcriptional regulator of genes involved in primary carbon metabolism and is associated with bacterial resistance and virulence, although the exact mechanism is unclear. Our study demonstrates that PaRccR is a direct repressor of the transcriptional regulator genes mvaU and algU. Biochemical and structural analyses reveal that PaRccR can switch its DNA recognition mode through conformational changes triggered by KDPG binding or release. Mutagenesis and functional analysis underscore the significance of allosteric communication between the SIS domain and the DBD domain. Our findings suggest that, despite its overall structural similarity to other bacterial RpiR-type regulators, RccR displays a more complex regulatory element binding mode induced by ligands and a unique regulatory mechanism.
Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Virulência/genética , Fatores de Virulência/genéticaRESUMO
Buckwheat (Fagopyrum spp.) is a typical pseudocereal, valued for its extensive nutraceutical potential as well as its centuries-old cultivation. Tartary buckwheat and common buckwheat have been used globally and become well-known nutritious foods due to their high quantities of: proteins, flavonoids, and minerals. Moreover, its increasing demand makes it critical to improve nutraceutical, traits and yield. In this review, bioactive compounds accumulated in buckwheat were comprehensively evaluated according to their chemical structure, properties, and physiological function. Biosynthetic pathways of flavonoids, phenolic acids, and fagopyrin were methodically summarized, with the regulation of flavonoid biosynthesis. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these certain compounds are being synthesized in buckwheat still remains uncovered. The functional genes involved in the biosynthesis of flavonols, stress response, and plant development were identified based on multi-omics research. Furthermore, it delves into the applications of multi-omics in improving buckwheat's agronomic traits, including: yield, nutritional content, stress resilience, and bioactive compounds biosynthesis. While pangenomics combined with other omics to mine elite genes, the regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components, and developing a more efficient genetic transformation system for genetic engineering require further investigation for the execution of breeding designs aimed at enhancing desirable traits in buckwheat. This critical review will provide a comprehensive understanding of multi-omics for nutraceutical enhancement and traits improvement in buckwheat.
Buckwheat (Fagopyrum spp.) is considered as promising and sustainable nutrient crop for abundant flavonoids, phenolic acids and fagopyrum production with impressive biosynthetic capacity.The chemical structure, properties, physiological function, and biosynthesis pathways of these bioactive components are summarized.The comprehensive information of multi-omics including genome, transcriptome, proteome, and metabolism for buckwheat nutraceutical traits improvement has been concluded.The pangenomics combined with other omics to mine elite genes, and regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components are explored.
RESUMO
Status epilepticus (SE), a serious and often life-threatening medical emergency, is characterized by abnormally prolonged seizures. It is not effectively managed by present first-line anti-seizure medications and could readily develop into drug resistance without timely treatment. In this study, we highlight the therapeutic potential of CZL80, a small molecule that inhibits caspase-1, in SE termination and its related mechanisms. We found that delayed treatment of diazepam (0.5 h) easily induces resistance in kainic acid (KA)-induced SE. CZL80 dose-dependently terminated diazepam-resistant SE, extending the therapeutic time window to 3 h following SE, and also protected against neuronal damage. Interestingly, the effect of CZL80 on SE termination was model-dependent, as evidenced by ineffectiveness in the pilocarpine-induced SE. Further, we found that CZL80 did not terminate KA-induced SE in Caspase-1-/- mice but partially terminated SE in IL1R1-/- mice, suggesting the SE termination effect of CZL80 was dependent on the caspase-1, but not entirely through the downstream IL-1ß pathway. Furthermore, in vivo calcium fiber photometry revealed that CZL80 completely reversed the neuroinflammation-augmented glutamatergic transmission in SE. Together, our results demonstrate that caspase-1 inhibitor CZL80 terminates diazepam-resistant SE by blocking glutamatergic transmission. This may be of great therapeutic significance for the clinical treatment of refractory SE.
Assuntos
Anticonvulsivantes , Caspase 1 , Camundongos Endogâmicos C57BL , Estado Epiléptico , Animais , Estado Epiléptico/tratamento farmacológico , Caspase 1/metabolismo , Camundongos , Masculino , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Ácido Caínico/farmacologia , Camundongos Knockout , Ácido Glutâmico/metabolismo , Inibidores de Caspase/farmacologia , Inibidores de Caspase/uso terapêutico , Diazepam/farmacologia , Diazepam/uso terapêutico , Transmissão Sináptica/efeitos dos fármacosRESUMO
Type II toxin-antitoxin (TA) systems are widely distributed in bacterial and archaeal genomes and are involved in diverse critical cellular functions such as defense against phages, biofilm formation, persistence, and virulence. GCN5-related N-acetyltransferase (GNAT) toxin, with an acetyltransferase activity-dependent mechanism of translation inhibition, represents a relatively new and expanding family of type II TA toxins. We here describe a group of GNAT-Xre TA modules widely distributed among Pseudomonas species. We investigated PacTA (one of its members encoded by PA3270/PA3269) from Pseudomonas aeruginosa and demonstrated that the PacT toxin positively regulates iron acquisition in P. aeruginosa. Notably, other than arresting translation through acetylating aminoacyl-tRNAs, PacT can directly bind to Fur, a key ferric uptake regulator, to attenuate its DNA-binding affinity and thus permit the expression of downstream iron-acquisition-related genes. We further showed that the expression of the pacTA locus is upregulated in response to iron starvation and the absence of PacT causes biofilm formation defect, thereby attenuating pathogenesis. Overall, these findings reveal a novel regulatory mechanism of GNAT toxin that controls iron-uptake-related genes and contributes to bacterial virulence.
Assuntos
Antitoxinas , Toxinas Bacterianas , Acetiltransferases/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase/genética , Ferro/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismoRESUMO
Sleep state transitions are closely related to insomnia, drowsiness, and sleep maintenance. However, how the cortical network varies during such a transition process remains unclear. Changes in the cortical interaction during the short-term process of sleep stage transitions were investigated. In all, 40 healthy young participants underwent overnight polysomnography. The phase transfer entropy of six frequency bands was obtained from 16 electroencephalography channels to assess the strength and direction of information flow between the cortical regions. Differences in the cortical network between the first and the last 10 s in a 40-s transition period across wakefulness, N1, N2, N3, and rapid eye movement were, respectively, studied. Various frequency bands exhibited different patterns during the sleep stage transitions. It was found that the mutual transitions between the sleep stages were not necessarily the opposite. More significant changes were observed in the sleep deepening process than in the process of sleep awakening. During sleep stage transitions, changes in the inflow and outflow strength of various cortical regions led to regional differences, but for the entire sleep progress, such an imbalance did not intensify, and a dynamic balance was instead observed. The detailed findings of variations in cortical interactions during sleep stage transition promote understanding of sleep mechanism, sleep process, and sleep function. Additionally, it is expected to provide helpful clues for sleep improvement, like reducing the time required to fall asleep and maintaining sleep depth.
Assuntos
Encéfalo , Sono , Humanos , Vigília , Fases do Sono , EletroencefalografiaRESUMO
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
RESUMO
Developing new solid-state electrolyte materials for improving the proton conductivity remains an important challenge. Herein, a novel two-dimensional layered solid-state proton conductor Bi2O2-SiW12 nanocomposite, based on silicotungstic acid (H4SiW12O40) and Bi(NO3)3·5H2O, was synthesized and characterized. The composite consists of a layered cation framework [Bi2O2]2+ and interlayer-embedded counteranionic [SiW12O40]4-, which forms continuous hydrogen bond (O-H···O) networks through the interaction of adjacent oxygen atoms on the surface of the [Bi2O2]2+ and oxygen atoms of the H4SiW12O40. Facile proton transfer along these pathways endows the Bi2O2-SiW12 (30:1) nanocomposite with an excellent proton conductivity of 3.61 mS cm-1 at 90 °C and 95% relative humidity, indicating that the nanocomposite has good prospects as a highly efficient proton conductor.
RESUMO
BACKGROUND: Recent small subcortical infarcts (RSSIs) could evolve into cavitation (lacunes) or non-cavitation (white matter hyperintensities or disappearance) during the chronic period, but the factors involved remain unclear. PURPOSE: To explore the association between total cerebral small vessel disease (CSVD) burden and lesion cavitation. MATERIAL AND METHODS: We retrospectively selected 202 inpatients with an isolated RSSI who underwent baseline and follow-up magnetic resonance imaging (median interval = 16.6 months; interquartile range [IQR]=8.2-30.1). Inpatients were divided into cavitation and non-cavitation groups depending on whether a fluid-filled cavity formed. Data including demographic, clinical, and radiological features were collected and analyzed. To determine total CSVD burden, four imaging markers, including lacunes, microbleeds, white matter hyperintensities, and enlarged perivascular spaces, were rated and summed as a final practical score between 0 and 4. RESULTS: Overall, 137 (67.8%) patients progressed to cavitation and 65 (32.2%) to non-cavitation. Binary multivariable regression analysis showed that the baseline total CSVD burden (P = 0.005) and infarct diameter (P = 0.002) were independent risk factors for cavitation. A severe total burden (scores of 3-4) at baseline was independently related to cavitation (P = 0.001). Moreover, the total CSVD burden score varied from 2 (IQR=1-3) at baseline to 3 (IQR=2-4) at follow-up. The extent of the increase in total burden was correlated with cavitation (r = 0.201; P = 0.004). CONCLUSION: Total CSVD burden, both the baseline value and extent of increase, was positively associated with cavitation. RSSIs with severe total CSVD burden at baseline have a greater potential to become cavitated.
Assuntos
Doenças de Pequenos Vasos Cerebrais , Humanos , Estudos Retrospectivos , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Análise de Regressão , Infarto/complicaçõesRESUMO
All multicellular organisms keep a balance between sink and source activities by controlling nutrient transport at strategic positions. In most plants, photosynthetically produced sucrose is the predominant carbon and energy source, whose transport from leaves to carbon sink organs depends on sucrose transporters. In the model plant Arabidopsis thaliana, transport of sucrose into the phloem vascular tissue by SUCROSE TRANSPORTER 2 (SUC2) sets the rate of carbon export from source leaves, just like the SUC2 homologs of most crop plants. Despite their importance, little is known about the proteins that regulate these sucrose transporters. Here, identification and characterization of SUC2-interaction partners revealed that SUC2 activity is regulated via its protein turnover rate and phosphorylation state. UBIQUITIN-CONJUGATING ENZYME 34 (UBC34) was found to trigger turnover of SUC2 in a light-dependent manner. The E2 enzyme UBC34 could ubiquitinate SUC2 in vitro, a function generally associated with E3 ubiquitin ligases. ubc34 mutants showed increased phloem loading, as well as increased biomass and yield. In contrast, mutants of another SUC2-interaction partner, WALL-ASSOCIATED KINASE LIKE 8 (WAKL8), showed decreased phloem loading and growth. An in vivo assay based on a fluorescent sucrose analog confirmed that SUC2 phosphorylation by WAKL8 can increase transport activity. Both proteins are required for the up-regulation of phloem loading in response to increased light intensity. The molecular mechanism of SUC2 regulation elucidated here provides promising targets for the biotechnological enhancement of source strength.
Assuntos
Arabidopsis/fisiologia , Sequestro de Carbono , Carbono/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Floema/metabolismo , Fosforilação/fisiologia , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/fisiologiaRESUMO
Ferroptosis is an iron-dependent form of cell death, which is reported to be associated with glioma progression and drug sensitivity. Targeting ferroptosis is a potential therapeutic approach for glioma. However, the molecular mechanism of glioma cell ferroptosis is not clear. In this study, we profile the change of 3D chromatin structure in glioblastoma ferroptosis by using HiChIP and study the 3D gene regulation network in glioblastoma ferroptosis. A combination of an analysis of HiChIP and RNA-seq data suggests that change of chromatin loops mediated by 3D chromatin structure regulates gene expressions in glioblastoma ferroptosis. Genes that are regulated by 3D chromatin structures include genes that were reported to function in ferroptosis, like HDM2 and TXNRD1. We propose a new regulatory mechanism governing glioblastoma cell ferroptosis by 3D chromatin structure.
Assuntos
Ferroptose , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Ferroptose/genética , Morte Celular , Cromatina/genéticaRESUMO
Colonization factor CFA/I defines the major adhesive fimbriae of enterotoxigenic Escherichia coli and mediates bacterial attachment to host intestinal epithelial cells. The CFA/I fimbria consists of a tip-localized minor adhesive subunit, CfaE, and thousands of copies of the major subunit CfaB polymerized into an ordered helical rod. Biosynthesis of CFA/I fimbriae requires the assistance of the periplasmic chaperone CfaA and outer membrane usher CfaC. Although the CfaE subunit is proposed to initiate the assembly of CFA/I fimbriae, how it performs this function remains elusive. Here, we report the establishment of an in vitro assay for CFA/I fimbria assembly and show that stabilized CfaA-CfaB and CfaA-CfaE binary complexes together with CfaC are sufficient to drive fimbria formation. The presence of both CfaA-CfaE and CfaC accelerates fimbria formation, while the absence of either component leads to linearized CfaB polymers in vitro. We further report the crystal structure of the stabilized CfaA-CfaE complex, revealing features unique for biogenesis of Class 5 fimbriae.
Assuntos
Adesinas Bacterianas/metabolismo , Escherichia coli Enterotoxigênica/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Chaperonas Moleculares/metabolismo , Sequência de Aminoácidos , Citoplasma , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Chaperonas Moleculares/genética , Conformação Proteica , Homologia de Sequência de AminoácidosRESUMO
PURPOSE: Sleep apnea-hypopnea syndrome (SAHS) is an independent risk factor for various cardiovascular and cerebrovascular diseases, but the underlying relationship of its physiological subsystems remains unclear. Thus, we aimed to investigate the effect of SAHS on central and autonomic nervous system (CNS-ANS) interactions during sleep. METHODS: Thirty-five patients with SAHS and 19 healthy age-matched controls underwent overnight polysomnography. The absolute spectral powers of five frequency bands from six EEG channels and ECG morphological features (HR, PR interval, QT interval) were calculated. Multivariable transfer entropy was applied to analyze the differences of the CNS-ANS network interactions between patients with SAHS of different severities and healthy controls during deep, light, and rapid eye movement sleep. RESULTS: The CNS-ANS network interacted bidirectionally in all researched groups, with the cardiac information modulating the brain activity. The information strength from QT to most EEG components and PR to some EEG components was significantly affected by SAHS severity during light sleep, which indicates the coupling features of QT-brain nodes are important indicators. The driver effects from the ß-band significantly increased in patients with SAHS. CONCLUSIONS: Respiratory events may be the main reason for the CNS-ANS interaction changes in SAHS. These findings help explain the physiological regulation process of SAHS and provide valuable information for analysis of the development of SAHS-related cardiovascular and chronic diseases.
Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Sistema Nervoso Autônomo/fisiologia , Humanos , Polissonografia , Sono , Apneia Obstrutiva do Sono/diagnósticoRESUMO
Type II toxin-antitoxin (TA) systems modulate many essential cellular processes in prokaryotic organisms. Recent studies indicate certain type II antitoxins also transcriptionally regulate other genes, besides neutralizing toxin activity. Herein, we investigated the diverse transcriptional repression properties of type II TA antitoxin PaHigA from Pseudomonas aeruginosa. Biochemical and functional analyses showed that PaHigA recognized variable pseudopalindromic DNA sequences and repressed expression of multiple genes. Furthermore, we presented high resolution structures of apo-PaHigA, PaHigA-PhigBA and PaHigA-Ppa2440 complex, describing how the rearrangements of the HTH domain accounted for the different DNA-binding patterns among HigA homologues. Moreover, we demonstrated that the N-terminal loop motion of PaHigA was associated with its apo and DNA-bound states, reflecting a switch mechanism regulating HigA antitoxin function. Collectively, this work extends our understanding of how the PaHigB/HigA system regulates multiple metabolic pathways to balance the growth and stress response in P. aeruginosa and could guide further development of anti-TA oriented strategies for pathogen treatment.
Assuntos
Antitoxinas , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Proteínas de Bactérias/genética , Motivos de Nucleotídeos , Pseudomonas aeruginosa/genéticaRESUMO
Depression is a common mental illness and a large number of researchers have been still devoted to exploring effective biomarkers for the identification of depression. Few researches have been conducted on functional connectivity (FC) during sleep in depression. In this paper, a novel depression characterization is proposed using specific spatial FC features of sleep electroencephalography (EEG). Overnight polysomnography recordings were obtained from 26 healthy individuals and 25 patients with depression. The weighted phase lag indexes (WPLIs) of four frequency bands and five sleep periods were obtained from 16 EEG channels. The high discriminative connections extracted via feature evaluation and the cross-within variation (CW)-the spatial feature constructed to characterize the different performances in inter- and intra-hemispheric FC based on WPLIs, were utilized to classify patients and normal controls. The results showed that enhanced average FC and spatial differences, higher inter-hemispheric FC and lower intra-hemispheric FC, were found in patients. Furthermore, abnormalities in the inter-hemispheric connections of the temporal lobe in the theta band should be important indicators of depression. Finally, both CW and high discriminative WPLI features performed well in depression screening and CW was more specific for characterizing abnormal cortical EEG performance of depression. Our work investigated and characterized the abnormalities in sleep cortical activity in patients with depression, and may provide potential biomarkers for assisting with depression identification and new insights into the understanding of pathological mechanisms in depression.
Assuntos
Depressão , Sono , Biomarcadores , Eletroencefalografia , Humanos , PolissonografiaRESUMO
Proton exchange membrane fuel cells are limited because they are limited to working temperatures and are susceptible to damage by dramatic electrochemical environments such as hydrogen peroxide/radicals. It is necessary to develop new proton-conducting materials that are water-stable and can operate at high temperatures. The hourglass reduced molybdophosphate-based compound (H2bimb)3[Zn3(H6P4Mo6O31)2] (bimb = 1,4-bis[(1H-imidazol-1-yl)methyl]benzene) was designed and synthesized under solvothermal conditions. Single-crystal X-ray diffraction analyses demonstrated noticeably that CUST-571 was composed of an hourglass {Zn[P4Mo6]2} structure, which consisted of two fully reduced half-units {P4Mo6}. It was found that CUST-571 possessed an excellent proton conductivity of 4.54 × 10-3 S cm-1 at 85 °C and 98% RH (relative humidity). In addition, CUST-571 is capable of an excellent catalytic decomposition of H2O2, which is beneficial to increase the life of fuel cells. On the basis of the aforementioned results, CUST-571 may be a promising proton-conducting polyoxometalate hybrid material in the future.
RESUMO
Lamprey, one of the most basal jawless vertebrate, is an excellent model for studying vertebrate evolution, embryo development, and the origin of adaptive immunity. This study investigated the differentially expressed proteins in lamprey leukocytes in response to the co-stimulation of intestinal Aeromonas and Shewanella by using quantitative proteomics techniques. Significant differentially expressed proteins were identified. Gene Ontology annotation and the Kyoto Encyclopedia of Genes and Genomes pathway based on the significant differentially expressed proteins were analyzed. Most of the differentially expressed proteins were predicted to be involved in important signaling pathways. Quantitative real-time polymerase chain reaction was used to verify the expression of differentially expressed proteins at the mRNA level. The expression of some differentially expressed proteins was not consistent at the mRNA and protein levels. Differentially expressed proteins that are essential for lamprey-intestinal bacteria interaction should be identified to understand the lamprey adaptive immune response induced by gut microbiota.
Assuntos
Aeromonas , Shewanella , Aeromonas/genética , Animais , Lampreias , Leucócitos , Proteômica , Shewanella/genéticaRESUMO
Biofilm formation is a critical determinant in the pathopoiesis of Pseudomonas aeruginosa It could significantly increase bacterial resistance to drugs and host defense. Thus, inhibition of biofilm matrix production could be regarded as a promising attempt to prevent colonization of P. aeruginosa and the subsequent infection. PpgL, a periplasmic gluconolactonase, has been reported to be involved in P. aeruginosa quorum-sensing (QS) system regulation. However, the detailed function and catalysis mechanism remain elusive. Here, the crystal structure of PpgL is described in the current study, along with biochemical analysis, revealing that PpgL is a typical ß-propeller enzyme with unique metal-independent lactone hydrolysis activity. Consequently, comparative analysis of seven-bladed propeller lactone-catalyzing enzymes and mutagenesis studies identify the critical sites which contribute to the diverse catalytic and substrate recognition functions. In addition, the reduced biofilm formation and attenuated invasion phenotype resulting from deletion of ppgL confirm the importance of PpgL in P. aeruginosa pathogenesis. These results suggest that PpgL is a potential target for developing new agents against the diseases caused by P. aeruginosa.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Lactonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade , Proteínas de Bactérias/genética , Biocatálise , Biofilmes , Hidrolases de Éster Carboxílico/genética , Células HeLa , Humanos , Lactonas/química , Metais/química , Metais/metabolismo , Periplasma/química , Periplasma/enzimologia , Periplasma/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Especificidade por Substrato , VirulênciaRESUMO
In plants and microorganisms, aspartate kinase (AK) catalyzes an initial commitment step of the aspartate family amino acid biosynthesis. Owing to various structural organizations, AKs from different species show tremendous diversity and complex allosteric controls. We report the crystal structure of AK from Pseudomonas aeruginosa (PaAK), a typical α2ß2 hetero-tetrameric enzyme, in complex with inhibitory effectors. Distinctive features of PaAK are revealed by structural and biochemical analyses. Essentially, the open conformation of Lys-/Thr-bound PaAK structure clarifies the inhibitory mechanism of α2ß2-type AK. Moreover, the various inhibitory effectors of PaAK have been identified and a general amino acid effector motif of AK family is described.
Assuntos
Aspartato Quinase/química , Aspartato Quinase/metabolismo , Pseudomonas aeruginosa/enzimologia , Regulação Alostérica/genética , Sítio Alostérico/genética , Sequência de Aminoácidos , Aspartato Quinase/genética , Catálise , Modelos Moleculares , Organismos Geneticamente Modificados , Domínios e Motivos de Interação entre Proteínas/genética , Pseudomonas aeruginosa/genética , Alinhamento de SequênciaRESUMO
Portable box volume measurement has always been a popular issue in the intelligent logistic industry. This work presents a portable system for box volume measurement that is based on line-structured light vision and deep learning. This system consists of a novel 2 × 2 laser line grid projector, a sensor, and software modules, with which only two laser-modulated images of boxes are required for volume measurement. For laser-modulated images, a novel end-to-end deep learning model is proposed by using an improved holistically nested edge detection network to extract edges. Furthermore, an automatic one-step calibration method for the line-structured light projector is designed for fast calibration. The experimental results show that the measuring range of our proposed system is 100-1800 mm, with errors less than ±5.0 mm. Theoretical analysis indicates that within the measuring range of the system, the measurement uncertainty of the measuring device is ±0.52 mm to ±4.0 mm, which is consistent with the experimental results. The device size is 140 mm × 35 mm × 35 mm and the weight is 110 g, thus the system is suitable for portable automatic box volume measurement.