RESUMO
Minimizing sludge generation in activated sludge systems is critical to reducing the operational cost of wastewater treatment plants (WWTPs), particularly for small plants where bioenergy is not recovered. This study introduces a novel acidic activated sludge technology for in situ sludge yield reduction, leveraging acid-tolerant ammonia-oxidizing bacteria (Candidatus Nitrosoglobus). The observed sludge yield (Yobs) was calculated based on the cumulative sludge generation and COD removal during 400 d long-term operation. The acidic process achieved a low Yobs of 0.106 ± 0.004 gMLSS/gCOD at pH 4.6 to 4.8 and in situ free nitrous acid (FNA) of 1 to 3 mg/L, reducing sludge production by 58 % compared to the conventional neutral-pH system (Yobs of 0.250 ± 0.003 gMLSS/gCOD). The acidic system also maintained effective sludge settling and organic matter removal over long-term operation. Mechanism studies revealed that the acidic sludge displayed higher endogenous respiration, sludge hydrolysis rates, and higher soluble microbial products and loosely-bounded extracellular polymer substances, compared to the neutral sludge. It also selectively enriched several hydrolytic genera (e.g., Chryseobacterium, Acidovorax, and Ottowia). Those results indicate that the acidic pH and in situ FNA enhanced sludge disintegration, hydrolysis, and cryptic growth. Besides, a lower intracellular ATP content was observed for acidic sludge than neutral sludge, suggesting potential decoupling of catabolism and anabolism in the acidic sludge. These findings collectively demonstrate that the acidic activated sludge technology could significantly reduce sludge yield, contributing to more cost- and space-effective wastewater management.
Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Concentração de Íons de Hidrogênio , Reatores Biológicos , Amônia/metabolismoRESUMO
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in the aquatic environment and have caused widespread concerns globally due to their potential hazards to humans. Especially, NPs have smaller sizes and higher penetrability, and therefore can penetrate the human barrier more easily and may pose potentially higher risks than MPs. Currently, most reviews have overlooked the differences between MPs and NPs and conflated them in the discussions. This review compared the differences in physicochemical properties and environmental behaviors of MPs and NPs. Commonly used techniques for removing MPs and NPs currently employed by wastewater treatment plants and drinking water treatment plants were summarized, and their weaknesses were analyzed. We further comprehensively reviewed the latest technological advances (e.g., emerging coagulants, new filters, novel membrane materials, photocatalysis, Fenton, ozone, and persulfate oxidation) for the separation and degradation of MPs and NPs. Microplastics are more easily removed than NPs through separation processes, while NPs are more easily degraded than MPs through advanced oxidation processes. The operational parameters, efficiency, and potential governing mechanisms of various technologies as well as their advantages and disadvantages were also analyzed in detail. Appropriate technology should be selected based on environmental conditions and plastic size and type. Finally, current challenges and prospects in the detection, toxicity assessment, and removal of MPs and NPs were proposed. This review intends to clarify the differences between MPs and NPs and provide guidance for removing MPs and NPs from urban water systems.
Assuntos
Microplásticos , Poluentes Químicos da Água , Purificação da Água , Plásticos , Águas Residuárias/químicaRESUMO
Bioretention systems are one of the most widely used stormwater control measures for urban runoff treatment. However, stable and effective dissolved nutrient treatment by bioretention systems is often challenged by complicated stormwater conditions. In this study, pyrite-only (PO), pyrite-biochar (PB), pyrite-woodchip (PW), and pyrite-woodchip-biochar mixed (M) bioretention systems were established to study the feasibility of improving both stability and efficiency in bioretention system via multi-media interaction. PB, PW, and M all showed enhanced dissolved nitrogen and/or phosphorus removal compared to PO, with M demonstrating the highest efficiency and stability under different antecedent drying durations (ADD), pollutant levels, and prolonged precipitation depth. The total dissolved nitrogen and dissolved phosphorus removal in M ranged between 64%-86% and 80%-95%, respectively, with limited organic matter and iron leaching. Pore water, microbial community, and material analysis collectively indicate that pyrite, woodchip, and biochar synergistically facilitated multiple nutrient treatment processes and protected each other against by-product leaching. Pyrite-woodchip interaction greatly increased nitrate removal by facilitating mixotrophic denitrification, while biochar further enhanced ammonium adsorption and expanded the denitrification area. The Fe3+ generated by pyrite aerobic oxidation was adsorbed on the biochar surface and potentially formed a Fe-biochar composite layer, which not only reduced Fe3+-induced pyrite excessive oxidation but also potentially increased organic matter adsorption. Fe (oxyhydr)oxides intermediate product formed by pyrite oxidation, in return, controlled the phosphorus and organic matter leaching from biochar and woodchip. Overall, this study demonstrates that multi-media interaction may enable bioretention systems to achieve stable and effective urban runoff treatment.
Assuntos
Carvão Vegetal , Ferro , Nitrogênio , Sulfetos , Nitrogênio/análise , Fósforo/análise , ChuvaRESUMO
Bacterial pathogens and antibiotic resistance genes (ARGs) are extensively disseminated into the environment via hospital wastewater (HWW), as it contains large quantities of feces from resident patients. However, studies on the antibiotic resistome and pathogenic bacteria from the gut of resident patients within the hospital wastewater treatment plant (hWWTP) are limited. Here, we examined and compared the occurrence and abundance of ARGs, mobile genetic elements (MGEs), metals, and bacterial communities from the feces of patients in a typical hWWTP system and determined the pathogenic hosts responsible for transferring ARGs. There were 176 ARGs and 43 MGEs detected in the feces of hospitalized patients, 129 genes were persistent, and 88 genes were enriched after HWW treatment, particularly for the blaVEB, blaNDM, and class 1 integron (intI1), with an average of 659-fold, 202-fold, and seven-fold enrichment, respectively. MGEs, especially Is613, in the feces of hospitalized patients were exceptionally abundant and even surpassed the abundance of total ARGs, which explained the persistence of ARGs in hWWTPs due to possible gene mobilization events. Bacteroidetes and Firmicutes were the most abundant phyla in these feces, accounting for 81 % of the total gut microbiota, while Epsilonbacteraeota and Proteobacteria dominated the hWWTPs. Additionally, 54 possible bacterial pathogens were found in the hospital environment, including four "ESKAPE" pathogens and 14 cancer-related pathogens. Many of them were strongly associated with different types of ARGs. Notably, Bacteroides was the major potential ARG-harboring pathogenic genus, as determined by the network analysis, and was highly abundant after the treatment. The altered microbial community was the major contributing factor shaping antibiotic resistome. This study might provide a comprehensive insight into the distribution profiles of ARGs and pathogens from the gut of inpatients throughout the HWW treatment system, which could be used as a reference for optimizing HWW treatment and monitoring public risk.
Assuntos
Antibacterianos , Purificação da Água , Humanos , Genes Bacterianos , Bactérias/genética , Águas Residuárias/microbiologia , Fezes , HospitaisRESUMO
Cooling is important for AlGaN/GaN high-electron mobility transistors (HEMTs) performance. In this paper, the advantages and disadvantages of the cooling performance of three cooling schemes: remote cooling (R-cool), near-chip cooling (NC-cool), and chip-embedded cooling (CE-cool) are compared. The influences of distinct geometric parameters and operating conditions on thermal resistance are investigated. The results show that the thermal resistances of NC-cool and CE-cool are almost the same as each other. Decreasing microchannel base thickness (hb) significantly increases the thermal resistance of CE-cool, and when its thickness is less than a critical value, NC-cool exhibits superior cooling performance than CE-cool. The critical thickness increases when decreasing the heat source pitch (Ph) and the convective heat transfer coefficient (hconv) or increasing the thermal conductivity of the substrate (λsub). Moreover, increasing Ph or λsub significantly improves the thermal resistance of three cooling schemes. Increasing hconv significantly decreases the thermal resistances of NC-cool and CE-cool while hardly affecting the thermal resistance of R-cool. The influence of the boundary thermal resistance (TBR) on the thermal resistance significantly increases at higher λsub and larger hconv.
RESUMO
Micro-nanoplastics (M-NPs) have become an emerging critical issue in the environment because they migrate easily, can bioaccumulate with toxic effects, and are difficult to degrade. Unfortunately, the current technologies for removing or degrading M-NPs in drinking water are insufficient to eliminate them completely, and residual M-NPs in drinking water may pose a threat to human health by impairing human immunity and metabolism. In addition to their intrinsic toxic effects, M-NPs may be even more harmful after drinking water disinfection than before disinfection. Herein, this paper comprehensively summarizes the negative impacts of several commonly used disinfection processes (ozone, chlorine, and UV) on M-NPs. Moreover, the potential leaching of dissolved organics from M-NPs and the production of disinfection byproducts during the disinfection process are discussed in detail. Moreover, due to the diversity and complexity of M-NPs, their adverse effects may exceed those of conventional organics (e.g., antibiotics, pharmaceuticals, and algae) after the disinfection process. Finally, we propose enhanced conventional drinking water treatment processes (e.g., enhanced coagulation, air flotation, advanced adsorbents, and membrane technologies), detection of residual M-NPs, and biotoxicological assessment as promising and ecofriendly candidates to efficiently remove M-NPs and avoid the release of secondary hazards.
Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Microplásticos , Desinfecção , Cloro , Poluentes Químicos da Água/análiseRESUMO
Ultrafiltration is an advanced water treatment process which performs poorly in the removal of small molecule organic pollutants, and is susceptible to irreversible membrane fouling. In this study, a new carbon nanotube cross-linked polypyrrole composite ultrafiltration membrane (CNT-PPy/PVDF) was fabricated, and exhibited excellent conductivity, hydrophilicity, and permeability in a novel electro-filtration activated peroxydisulfate (PDS) system (EFAP) for cathodic electrochemical activation of PDS. The EFAP showed satisfactory performance in removal of series of small molecule organic pollutants (i.e., carbamazepine, sulfamethoxazole, phenol, diclofenac.) and stable removal ratio (remaining above 90% after 20 operating cycles). Further study proved the electric field could effectively protect the cathodic CNT-PPy/PVDF membrane from oxidative damage through continual free electrons injection. Besides, the EFAP achieved up to 95% flux recovery and 80% reduction of irreversible membrane fouling (bovine serum albumin as the model foulant). Moreover, experiments confirmed that the in situ generated â¢OH, SO4â¢-, and 1O2 were the main reactive oxygen species contributing to small organics removal, while the irreversible membrane fouling mitigation was mainly due to the electrical repulsion, SO4â¢- and â¢OH, rather than 1O2. This new type of EFAP may provide a promising and sustainable approach in organic emerging contaminants control in water treatment.
Assuntos
Polímeros , Ultrafiltração , Polímeros de Fluorcarboneto , Membranas Artificiais , Polivinil , PirróisRESUMO
Media amendment has been more and more frequently tested in stormwater bioretention systems for enhanced runoff pollutant treatment. However, few studies systematically evaluated the amended system over a long time span, which hindered the further optimization of the proposed amended media. In this study, biochar-pyrite system (PB), conventional sand system (SB), and biochar-woodchip system (WB) were established and operated for 26 months. Media amendment greatly enhanced the dissolved nutrient removal, the highest total dissolved nitrogen removal in PB and WB were 65.6±3.6% and 68.2±2.5%, respectively. Compared with PB, WB could maintain excellent nitrogen removal under long-term operation. In contrast, PB demonstrated stable and more effective total dissolved phosphorus removal during all stages (73.1±3.1%-80.3±4.1%). A high content of phosphorus and organic matter was leached in WB especially at initial operation, while the initial pollutant leaching in PB and SB is much lower, about one-third of WB. Microbial and metabolic function analysis indicated that the microbial community in the bioretention system is complicated and stable. Media amendment enhanced microbial diversity and the relative abundance of functional genera related to nitrogen (Nitrospira, Thauera, Denitratisoma, etc.), sulfur (Thiobacillus, Geobacter, Desulfovibrio, etc.), and carbon cycles (cellulomonas, saccharimonadales, and SBR1031, etc.), which well explained the enhanced pollutant removal and by-product leaching in different systems. Overall, the current study indicates that although media amendment is conducive to enhanced dissolved nutrient removal in bioretention systems, it can hardly maintain both stability and efficiency from initial set-up to long-term operation. In practical application, catchment characteristics, prioritized pollutants, meteorological factors, etc. should all be considered before choosing suitable amended media and its design factors, thereby maximising the stability and efficiency of the bioretention system.
Assuntos
Poluentes Ambientais , Chuva , Areia , Fósforo , Nitrogênio , EnxofreRESUMO
Bioretention system with modified media has been increasingly used to control dissolved nutrients in stormwater runoff. However, complicated removal processes and improper design have made most of them hardly achieve comprehensive dissolved nutrient removal and even show by-product generation problem, especially during extreme stormwater events. Here, a modified biochar-pyrite (FeS2) bi-layer bioretention system was developed and tested under various stormwater conditions with conventional sand-based and woodchip-based bioretention systems as controls. The modified system showed high stability and efficiency for dissolved nutrient treatment. The removal of dissolved organic nitrogen, ammonium, total dissolved nitrogen, and total dissolved phosphorus were 86.3-93.0%, 95.3-98.1%, 41.4-76.5%, and 69.7-88.2%, respectively. Stormwater conditions only influence nitrate removal which decreased with the increase of total received volume and increased with the extension of antecedent drying duration. Net sulfate and total iron generation were very low, less than 8 mg/L and 0.15 mg/L, respectively. Several microbiology, spectroscopy, and media related tests further demonstrated that the vadose zone and submerged zone showed synergy effects during operation. Biochar addition facilitated ammonium adsorption, nitrification, and in situ denitrification in the vadose zone. It also intercepted dissolved oxygen, which alleviated aerobic pyrite oxidation and created an anoxic condition for the submerged zone. Meanwhile, the pyrite-modified submerged zone achieved stable mixotrophic denitrification. The generated iron intermediate products further controlled phosphorus from both influent and vadose zone leaching into stable forms. Mixotrophic denitrification and potential sulfate reduction processes also reduce sulfate generation. Overall, the biochar-pyrite bi-layer bioretention is a highly promising technology for stormwater runoff treatment, with effective dissolved nutrient removal and minimal by-product generation in various stormwater conditions.
Assuntos
Desnitrificação , Ferro , Carvão Vegetal , Nitrogênio , Nutrientes , Chuva , SulfetosRESUMO
A novel water treatment process (designated E-Fe0-O3 process) was constructed by combining electrolysis, micro-size zero valence iron (Fe0) and ozone in this study. Compared with other control processes, the combined process demonstrated a remarkable synergy, and it could obtain 90.5% of NB removal within 20 min. As for the mineralization experiment, the TOC removal efficiency for NB within 120 min was higher in the E-Fe0-O3 process, while the energy consumption was lower than the traditional E-O3 and E-Fe0 process. Interestingly, hydroxyl radicals (OH) acted as a key role for NB removal, and the concentration of OH in different processes were compared. Further study indicated OH, direct anode oxidation, direct ozonation, and zero valence iron catalysis were all responsible for nitrobenzene removal. Besides, the durability of Fe0 in the E-Fe0-O3 process was systematically evaluated by reusing Fe0 10 times. Notably, the electric field could protect micro-size zero valence iron from passivation for catalytic ozonation after the long-term reaction. Finally, other ozone-refractory organics pollutants were also investigated in the E-Fe0-O3 process, and the influence of various water matrices on NB removal was discussed. All results demonstrated that the E-Fe0-O3 process was an efficient method to remove refractory organic pollutants in various natural waters.
Assuntos
Ozônio , Poluentes Químicos da Água , Eletrodos , Ferro , NitrobenzenosRESUMO
The N, S co-doped biochar (N, S-BC) with multistage pore structure was successfully synthesized from nanocellulose and thiourea by one-step pyrolysis, which could effectively activate peroxymonosulfate (PMS) to degrade sulfamethoxazole (SMX) in water. Moreover, the removal efficiency of SMX by this oxidation system was 2.3-3.1 times than that of other systems activated by common metal oxides (such as Fe3O4ãFe2O3, and MnO2). More importantly, the mechanism of the N, S-BC/PMS process was deduced by reactive oxygen species (ROS) quenching experiment and electron paramagnetic resonance (EPR) test, which exhibited that surface-bound free radicals and singlet oxygen (1O2) played an essential role in the SMX degradation. Surprisingly, the sulfate radical (SO4â¢-) and hydroxyl radical (â¢OH) produced in this system existed in a bound state on the surface of the carbon catalyst to react with SMX, rather than dispersed in the aqueous solution. This particular form of free radicals could resist the influence of background substances and pH changes in water, and maintain excellent SMX degradation efficiency under different water matrices and pH. This study provides a new insight into the application of carbon catalyst in actual water pollution control.
Assuntos
Nitrogênio , Poluentes Químicos da Água , Carvão Vegetal , Compostos de Manganês , Óxidos , Peróxidos , Enxofre , Tioureia , Poluentes Químicos da Água/análiseRESUMO
Driven approach is vital for evaluating degradation and energy efficiencies of piezocatalysis process. Thus, piezoelectric ozonation processes driven by hydraulic (HPE-O3) and ultrasonic (UPE-O3) forces were compared systematically, using BaTiO3 as piezoelectric material for ibuprofen (IBP) degradation. The synergy indexes of HPE-O3 and UPE-O3 processes were 4.51 and 5.78, respectively. Besides, UPE-O3 process (88.84%) achieved better mineralization efficiency than HPE-O3 process (68.80%) in 90 min. Nevertheless, the energy consumptions of HPE-O3 process was only 4.01 of UPE-O3 process. The formation rate and concentration of â¢OH (the dominant active species in both processes) in UPE-O3 process were 2-3 times higher than that in HPE-O3 process. Notably, piezoelectric potential and current density driven by ultrasound were approximately 47500-fold and 40-fold than those by hydro-energy, respectively. These led to the difference of â¢OH paths between HPE-O3 and UPE-O3 processes. Further analyses indicated that â¢OH was mainly generated by single-electron transfer without H2O2 generation in HPE-O3 process, whereas both single- and double-electron transfer (with H2O2 generation) contributed to the production of â¢OH in UPE-O3 process. This study revealed the mechanism of piezoelectric ozonation process with different driven approaches and may provide valuable reference for selection of driven approaches in piezocatalytic study and application.
Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Ibuprofeno , Oxirredução , Poluentes Químicos da Água/análiseRESUMO
A novel water treatment process combining electrolysis, permanganate and ozone was tested in the laboratory. The combination showed synergistic effects in degrading various organic contaminants (like diclofenac, sulfamethoxazole, carbamazepine, etc.). A small amount of O3 (1 mg L-1, 60 mL min-1) significantly improved the oxidation and mineralization ability of an electro-permanganate process by generating more reactive manganese species and hydroxyl radicals. The combination required less energy consumption than comparable processes. Mechanism experiments showed that the ·OH involved was mainly generated by cathode reduction, homogeneous manganese catalysis, and heterogeneous manganese catalysis of O3 decomposition. Reactive Mn species were generated by electro-reduction, ·OH oxidation or/and O3 activation. In situ generated Mn (â £)s plays a vital role in generating ·OH and reactive Mn species. ·OH generated by O3 catalysis could transfer colloid Mn (â £)s to free Mn (â ¤)aq and Mn (â ¥) aq. And both the ·OH and RMnS played the dominant role for DCF removal. Increasing permanganate dosage, O3 concentration, the current density, Cl-, or humic acid, and decreasing the pH all enhanced the degradation of diclofenac, but the presence of PO43- or HCO3- inhibited it. Supplementing electrolysis with permanganate and O3 might be a practical, sustainable, and economical technology for treating refractory organics in natural waters.