Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cancer Sci ; 115(4): 1333-1345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320747

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies worldwide. However, drug discovery for PDAC treatment has proven complicated, leading to stagnant therapeutic outcomes. Here, we identify Glycogen synthase kinase 3 (GSK3) as a therapeutic target through a whole-body genetic screening utilizing a '4-hit' Drosophila model mimicking the PDAC genotype. Reducing the gene dosage of GSK3 in a whole-body manner or knocking down GSK3 specifically in transformed cells suppressed 4-hit fly lethality, similar to Mitogen-activated protein kinase kinase (MEK), the therapeutic target in PDAC we have recently reported. Consistently, a combination of the GSK3 inhibitor CHIR99021 and the MEK inhibitor trametinib suppressed the phosphorylation of Polo-like kinase 1 (PLK1) as well as the growth of orthotopic human PDAC xenografts in mice. Additionally, reducing PLK1 genetically in 4-hit flies rescued their lethality. Our results reveal a therapeutic vulnerability in PDAC that offers a treatment opportunity for patients by inhibiting multiple targets.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Quinases de Proteína Quinase Ativadas por Mitógeno , Quinase 3 da Glicogênio Sintase/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo
2.
Cancer Sci ; 112(2): 505-514, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33275812

RESUMO

Cancer burden has been increasing worldwide, making cancer the second leading cause of death in the world. Over the past decades, various experimental models have provided important insights into the nature of cancer. Among them, the fruit fly Drosophila as a whole-animal toolkit has made a decisive contribution to our understanding of fundamental mechanisms of cancer development including loss of cell polarity. In recent years, scalable Drosophila platforms have proven useful also in developing anti-cancer regimens that are effective not only in mammalian models but also in patients. Here, we review studies using Drosophila as a tool to advance cancer study by complementing other traditional research systems.


Assuntos
Modelos Animais de Doenças , Drosophila , Neoplasias , Animais , Humanos
3.
Nat Chem Biol ; 14(3): 291-298, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355849

RESUMO

Synthetic tailoring of approved drugs for new indications is often difficult, as the most appropriate targets may not be readily apparent, and therefore few roadmaps exist to guide chemistry. Here, we report a multidisciplinary approach for accessing novel target and chemical space starting from an FDA-approved kinase inhibitor. By combining chemical and genetic modifier screening with computational modeling, we identify distinct kinases that strongly enhance ('pro-targets') or limit ('anti-targets') whole-animal activity of the clinical kinase inhibitor sorafenib in a Drosophila medullary thyroid carcinoma (MTC) model. We demonstrate that RAF-the original intended sorafenib target-and MKNK kinases function as pharmacological liabilities because of inhibitor-induced transactivation and negative feedback, respectively. Through progressive synthetic refinement, we report a new class of 'tumor calibrated inhibitors' with unique polypharmacology and strongly improved therapeutic index in fly and human MTC xenograft models. This platform provides a rational approach to creating new high-efficacy and low-toxicity drugs.


Assuntos
Carcinoma Neuroendócrino/metabolismo , Carcinoma/metabolismo , Drosophila/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Neoplasias da Glândula Tireoide/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Desenho de Fármacos , Feminino , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Transplante de Neoplasias , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Sorafenibe/farmacologia
4.
PLoS Comput Biol ; 15(4): e1006878, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31026276

RESUMO

Drosophila provides an inexpensive and quantitative platform for measuring whole animal drug response. A complementary approach is virtual screening, where chemical libraries can be efficiently screened against protein target(s). Here, we present a unique discovery platform integrating structure-based modeling with Drosophila biology and organic synthesis. We demonstrate this platform by developing chemicals targeting a Drosophila model of Medullary Thyroid Cancer (MTC) characterized by a transformation network activated by oncogenic dRetM955T. Structural models for kinases relevant to MTC were generated for virtual screening to identify unique preliminary hits that suppressed dRetM955T-induced transformation. We then combined features from our hits with those of known inhibitors to create a 'hybrid' molecule with improved suppression of dRetM955T transformation. Our platform provides a framework to efficiently explore novel kinase inhibitors outside of explored inhibitor chemical space that are effective in inhibiting cancer networks while minimizing whole body toxicity.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Neuroendócrino , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases , Neoplasias da Glândula Tireoide , Animais , Carcinoma Neuroendócrino/enzimologia , Carcinoma Neuroendócrino/metabolismo , Biologia Computacional/métodos , Drosophila , Modelos Biológicos , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/metabolismo , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/metabolismo , Neoplasias da Glândula Tireoide/enzimologia , Neoplasias da Glândula Tireoide/metabolismo
5.
Genes Cells ; 23(7): 580-589, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29749672

RESUMO

Jellyfish green fluorescent protein (GFP) and firefly luciferase can serve as versatile tracking markers for identification and quantification of transplanted cancer cells in vivo. However, immune reactions against these markers can hamper the formation of syngraft tumors and metastasis that follows. Here, we report two transgenic (Tg) mouse lines that express nonfunctional mutant marker proteins, namely modified firefly luciferase (Luc2) or enhanced GFP (EGFP). These mice, named as Tg-mLuc2 and Tg-mEGFP, turned out to be immunologically tolerant to the respective tracking markers and thus efficiently accepted syngeneic cancer cells expressing the active forms of the markers. We then injected intrarectally the F1 hybrid Tg mice (BALB/c × C57BL/6J) with Colon-26 (C26) colon cancer cells that originated from a BALB/c mouse. Even when C26 cells expressed active Luc2 or EGFP, they formed primary tumors in the Tg mice with only 104 cells per mouse compared with more than 106 cells required in the nontransgenic BALB/c hosts. Furthermore, we detected metastatic foci of C26 cells in the liver and lungs of the Tg mice by tracking the specific reporter activities. These results show the usefulness of the Tg mouse lines as recipients for transplantation experiments with the non-self tracking marker-expressing cells.


Assuntos
Isoenxertos/metabolismo , Transplante de Neoplasias/métodos , Animais , Proteínas de Fluorescência Verde , Luciferases , Proteínas Luminescentes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/fisiologia , Neoplasias
6.
Cancer Sci ; 108(4): 744-752, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28178391

RESUMO

A major cause of cancer death is its metastasis to the vital organs. Few effective therapies are available for metastatic castration-resistant prostate cancer (PCa), and progressive metastatic lesions such as lymph nodes and bones cause mortality. We recently identified AES as a metastasis suppressor for colon cancer. Here, we have studied the roles of AES in PCa progression. We analyzed the relationship between AES expression and PCa stages of progression by immunohistochemistry of human needle biopsy samples. We then performed overexpression and knockdown of AES in human PCa cell lines LNCaP, DU145 and PC3, and determined the effects on proliferation, invasion and metastasis in culture and in a xenograft model. We also compared the PCa phenotypes of Aes/Pten compound knockout mice with those of Pten simple knockout mice. Expression levels of AES were inversely correlated with clinical stages of human PCa. Exogenous expression of AES suppressed the growth of LNCaP cells, whereas the AES knockdown promoted it. We also found that AES suppressed transcriptional activities of androgen receptor and Notch signaling. Notably, AES overexpression in AR-defective DU145 and PC3 cells reduced invasion and metastasis to lymph nodes and bones without affecting proliferation in culture. Consistently, prostate epithelium-specific inactivation of Aes in Ptenflox/flox mice increased expression of Snail and MMP9, and accelerated growth, invasion and lymph node metastasis of the mouse prostate tumor. These results suggest that AES plays an important role in controlling tumor growth and metastasis of PCa by regulating both AR and Notch signaling pathways.


Assuntos
Movimento Celular/genética , Neoplasias da Próstata/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Idoso , Animais , Western Blotting , Linhagem Celular Tumoral , Proteínas Correpressoras , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Camundongos Transgênicos , Metástase Neoplásica , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transplante Heterólogo , Proteínas Supressoras de Tumor/metabolismo
7.
Cancer Sci ; 107(11): 1622-1631, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27561171

RESUMO

We recently found that the product of the AES gene functions as a metastasis suppressor of colorectal cancer (CRC) in both humans and mice. Expression of amino-terminal enhancer of split (AES) protein is significantly decreased in liver metastatic lesions compared with primary colon tumors. To investigate its downregulation mechanism in metastases, we searched for transcriptional regulators of AES in human CRC and found that its expression is reduced mainly by transcriptional dysregulation and, in some cases, by additional haploidization of its coding gene. The AES promoter-enhancer is in a typical CpG island, and contains a Yin-Yang transcription factor recognition sequence (YY element). In human epithelial cells of normal colon and primary tumors, transcription factor YY2, a member of the YY family, binds directly to the YY element, and stimulates expression of AES. In a transplantation mouse model of liver metastases, however, expression of Yy2 (and therefore of Aes) is downregulated. In human CRC metastases to the liver, the levels of AES protein are correlated with those of YY2. In addition, we noticed copy-number reduction for the AES coding gene in chromosome 19p13.3 in 12% (5/42) of human CRC cell lines. We excluded other mechanisms such as point or indel mutations in the coding or regulatory regions of the AES gene, CpG methylation in the AES promoter enhancer, expression of microRNAs, and chromatin histone modifications. These results indicate that Aes may belong to a novel family of metastasis suppressors with a CpG-island promoter enhancer, and it is regulated transcriptionally.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG/genética , Metástase Neoplásica/genética , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Correpressoras , Metilação de DNA/genética , Regulação para Baixo , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Camundongos , Mutação/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Elementos de Resposta/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Fator de Transcrição YY1/metabolismo
8.
Nat Commun ; 15(1): 7376, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231964

RESUMO

Flow cytometry is a vital tool in biomedical research and laboratory medicine. However, its accuracy is often compromised by undesired fluctuations in fluorescence intensity. While fluorescence lifetime imaging microscopy (FLIM) bypasses this challenge as fluorescence lifetime remains unaffected by such fluctuations, the full integration of FLIM into flow cytometry has yet to be demonstrated due to speed limitations. Here we overcome the speed limitations in FLIM, thereby enabling high-throughput FLIM flow cytometry at a high rate of over 10,000 cells per second. This is made possible by using dual intensity-modulated continuous-wave beam arrays with complementary modulation frequency pairs for fluorophore excitation and acquiring fluorescence lifetime images of rapidly flowing cells. Moreover, our FLIM system distinguishes subpopulations in male rat glioma and captures dynamic changes in the cell nucleus induced by an anti-cancer drug. FLIM flow cytometry significantly enhances cellular analysis capabilities, providing detailed insights into cellular functions, interactions, and environments.


Assuntos
Citometria de Fluxo , Glioma , Citometria de Fluxo/métodos , Animais , Ratos , Glioma/diagnóstico por imagem , Glioma/patologia , Glioma/metabolismo , Masculino , Microscopia de Fluorescência/métodos , Linhagem Celular Tumoral , Imagem Óptica/métodos , Humanos , Núcleo Celular/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Corantes Fluorescentes/química
9.
Cancer Res ; 83(16): 2704-2715, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37378549

RESUMO

Significant progress has been made in understanding the pathogenesis of pancreatic ductal adenocarcinoma (PDAC) by generating and using murine models. To accelerate drug discovery by identifying novel therapeutic targets on a systemic level, here we generated a Drosophila model mimicking the genetic signature in PDAC (KRAS, TP53, CDKN2A, and SMAD4 alterations), which is associated with the worst prognosis in patients. The '4-hit' flies displayed epithelial transformation and decreased survival. Comprehensive genetic screening of their entire kinome revealed kinases including MEK and AURKB as therapeutic targets. Consistently, a combination of the MEK inhibitor trametinib and the AURKB inhibitor BI-831266 suppressed the growth of human PDAC xenografts in mice. In patients with PDAC, the activity of AURKB was associated with poor prognosis. This fly-based platform provides an efficient whole-body approach that complements current methods for identifying therapeutic targets in PDAC. SIGNIFICANCE: Development of a Drosophila model mimicking genetic alterations in human pancreatic ductal adenocarcinoma provides a tool for genetic screening that identifies MEK and AURKB inhibition as a potential treatment strategy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Drosophila , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Aurora Quinase B , Neoplasias Pancreáticas
10.
Lab Chip ; 23(6): 1561-1575, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36648503

RESUMO

Circulating tumor cells (CTCs) are precursors to cancer metastasis. In blood circulation, they take various forms such as single CTCs, CTC clusters, and CTC-leukocyte clusters, all of which have unique characteristics in terms of physiological function and have been a subject of extensive research in the last several years. Unfortunately, conventional methods are limited in accurately analysing the highly heterogeneous nature of CTCs. Here we present an effective strategy for simultaneously analysing all forms of CTCs in blood by virtual-freezing fluorescence imaging (VIFFI) flow cytometry with 5-aminolevulinic acid (5-ALA) stimulation and antibody labeling. VIFFI is an optomechanical imaging method that virtually freezes the motion of fast-flowing cells on an image sensor to enable high-throughput yet sensitive imaging of every single event. 5-ALA stimulates cancer cells to induce the accumulation of protoporphyrin (PpIX), a red fluorescent substance, making it possible to detect all cancer cells even if they show no expression of the epithelial cell adhesion molecule, a typical CTC biomarker. Although PpIX signals are generally weak, VIFFI flow cytometry can detect them by virtue of its high sensitivity. As a proof-of-principle demonstration of the strategy, we applied cancer cells spiked in blood to the strategy to demonstrate image-based detection and accurate classification of single cancer cells, clusters of cancer cells, and clusters of a cancer cell(s) and a leukocyte(s). To show the clinical utility of our method, we used it to evaluate blood samples of four breast cancer patients and four healthy donors and identified EpCAM-positive PpIX-positive cells in one of the patient samples. Our work paves the way toward the determination of cancer prognosis, the guidance and monitoring of treatment, and the design of antitumor strategies for cancer patients.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Humanos , Feminino , Células Neoplásicas Circulantes/patologia , Citometria de Fluxo , Ácido Aminolevulínico/farmacologia , Congelamento , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Neoplasias da Mama/patologia , Anticorpos , Imagem Óptica , Biomarcadores Tumorais/metabolismo
11.
Front Oncol ; 12: 982751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091180

RESUMO

Cancer is one of the most severe health problems worldwide accounting for the second leading cause of death. Studies have indicated that cancers utilize different metabolic systems as compared with normal cells to produce extra energy and substances required for their survival, which contributes to tumor formation and progression. Recently, the fruit fly Drosophila has been attracting significant attention as a whole-body model for elucidating the cancer mechanisms including metabolism. This tiny organism offers a valuable toolkit with various advantages such as high genetic conservation and similar drug response to mammals. In this review, we introduce flies modeling for cancer patient genotypes which have pinpointed novel therapeutic targets and drug candidates in the salivary gland, thyroid, colon, lung, and brain. Furthermore, we introduce fly models for metabolic diseases such as diabetes mellitus, obesity, and cachexia. Diabetes mellitus and obesity are widely acknowledged risk factors for cancer, while cachexia is a cancer-related metabolic condition. In addition, we specifically focus on two cancer metabolic alterations: the Warburg effect and redox metabolism. Indeed, flies proved useful to reveal the relationship between these metabolic changes and cancer. Such accumulating achievements indicate that Drosophila offers an efficient platform to clarify the mechanisms of cancer as a systemic disease.

12.
Int J Clin Oncol ; 16(5): 464-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21847533

RESUMO

Colorectal cancer is the second most common cancer, and is the third leading cause of cancer-related death in Japan. The majority of these deaths is attributable to liver metastasis. Recent studies have provided increasing evidence that the chemokine-chemokine receptor system is a potential mechanism of tumor metastasis via multiple complementary actions: (a) by promoting cancer cell migration, invasion, survival and angiogenesis; and (b) by recruiting distal stromal cells (i.e., myeloid bone marrow-derived cells) to indirectly facilitate tumor invasion and metastasis. Here, we discuss recent preclinical and clinical data supporting the view that chemokine pathways are potential therapeutic targets for liver metastasis of colorectal cancer.


Assuntos
Quimiocinas/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Receptores de Quimiocinas/metabolismo , Movimento Celular/genética , Quimiocinas/antagonistas & inibidores , Quimiocinas/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Terapia de Alvo Molecular , Células Mieloides/metabolismo , Células Mieloides/patologia , Invasividade Neoplásica , Neovascularização Patológica/metabolismo , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/genética , Microambiente Tumoral
13.
Cancer Res ; 62(23): 6846-9, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12460897

RESUMO

Cyclooxygenase-2 (COX-2), the inducible COX isozyme, plays a key role in intestinal tumorigenesis. We have demonstrated recently that COX-2 protein is induced in the polyp stroma near the intestinal luminal surface in the Apc(Delta716) mouse, a model for human familial adenomatous polyposis, and stimulate tumor angiogenesis. However, the precise cell types that express COX-2 are still to be determined. By immunohistochemical analysis, here we show that the majority of COX-2-expressing cells in the intestinal polyps of Apc(Delta716) mice are fibroblasts and endothelial cells. Furthermore, the COX-2-expressing cells in human familial adenomatous polyposis polyps are also fibroblasts and endothelial cells. In contrast, bone marrow-derived cells such as macrophages and leukocytes express little COX-2 protein in the intestinal polyps. These results clearly indicate that fibroblasts and endothelial cells play important roles in polyp expansion by expressing COX-2, resulting in tumor angiogenesis.


Assuntos
Pólipos Intestinais/enzimologia , Isoenzimas/biossíntese , Prostaglandina-Endoperóxido Sintases/biossíntese , Actinas/biossíntese , Polipose Adenomatosa do Colo/enzimologia , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Animais , Antígenos CD34/biossíntese , Antígenos de Diferenciação/biossíntese , Ciclo-Oxigenase 2 , Endotélio Vascular/citologia , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Pólipos Intestinais/patologia , Macrófagos/enzimologia , Macrófagos/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Células Estromais/enzimologia , Células Estromais/metabolismo , Vimentina/biossíntese
14.
Cancer Res ; 64(11): 4010-7, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15173015

RESUMO

Chemokines and their receptors play key roles in leukocyte trafficking and are also implicated in cancer metastasis to specific organs. Here we show that mouse B16F10 melanoma cells constitutively express chemokine receptor CXCR3, and that its ligands CXCL9/Mig, CXCL10/IP-10, and CXCL11/I-TAC induce cellular responses in vitro, such as actin polymerization, migration, invasion, and cell survival. To determine whether CXCR3 could play a role in metastasis to lymph nodes (LNs), we constructed B16F10 cells with reduced CXCR3 expression by antisense RNA and investigated their metastatic activities after s.c. inoculations to syngeneic hosts, C57BL/6 mice. The metastatic frequency of these cells to LNs was markedly reduced to approximately 15% (P < 0.05) compared with the parental or empty vector-transduced cells. On the other hand, pretreatment of mice with complete Freund's adjuvant increased the levels of CXCL9 and CXCL10 in the draining LNs, which caused 2.5-3.0-fold increase (P < 0.05) in the metastatic frequency of B16F10 cells to the nodes with much larger foci. Importantly, such a stimulation of metastasis was largely suppressed when CXCR3 expression in B16F10 cells was reduced by antisense RNA or when mice were treated with specific antibodies against CXCL9 and CXCL10. We also demonstrate that CXCR3 is expressed on several human melanoma cell lines as well as primary human melanoma tissues (5 of 9 samples tested). These results suggest that CXCR3 inhibitors may be promising therapeutic agents for treatment of LN metastasis, including that of melanoma.


Assuntos
Linfonodos/patologia , Melanoma Experimental/patologia , Receptores de Quimiocinas/fisiologia , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Quimiocina CXCL10 , Quimiocina CXCL9 , Quimiocinas CXC/biossíntese , Quimiocinas CXC/genética , Citoesqueleto/metabolismo , Adesões Focais/fisiologia , Adjuvante de Freund/farmacologia , Humanos , Metástase Linfática , Melanoma/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Invasividade Neoplásica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores CXCR3 , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/biossíntese , Receptores de Quimiocinas/genética , Transfecção
15.
Cancer Res ; 63(16): 4872-7, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12941808

RESUMO

Membrane arachidonic acid is converted by cyclooxygenase (COX) into prostaglandin (PG) G(2) and then to PGH(2) which is subsequently metabolized to PGE(2) by PGE synthase (PGES). Both COX-1 and COX-2 play critical roles in intestinal polyp formation, whereas COX-2 is also expressed in cancers of a variety of organs. Likewise, inducible microsomal PGES (mPGES-1) is expressed in several types of cancer, although its role in benign polyp formation has not been investigated. We demonstrated recently that most COX-2-expressing cells in the polyps are stromal fibroblasts. Here we show colocalization of COX-1, COX-2 and mPGES in the intestinal polyp stromal fibroblasts of Apc(Delta 716) mice, a model for familial adenomatous polyposis. Contrary to COX-2 that was induced only in polyps >1 mm in diameter, COX-1 was found in polyps of any size. In polyps >1 mm, not only COX-2 but also mPGES was induced in the stromal fibroblasts where COX-1 had already been expressed. Although polyp number and size were markedly reduced in COX-1 (-/-) or COX-2 (-/-) compound mutant Apc mice, both COX-2 and mPGES were induced in the COX-1 (-/-) polyps, whereas COX-1 was expressed in the COX-2 (-/-) polyps. We found also in human familial adenomatous polyposis polyps that COX-2 and mPGES were induced in the COX-1-expressing fibroblasts. On the basis of these results, we propose that COX-1 expression in the stromal cells secures the basal level of PGE(2) that can support polyp growth to approximately 1 mm, and that simultaneous inductions of COX-2 and mPGES support the polyp expansion beyond approximately 1 mm by boosting the stromal PGE(2) production.


Assuntos
Pólipos Intestinais/enzimologia , Isoenzimas/fisiologia , Prostaglandina-Endoperóxido Sintases/fisiologia , Animais , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2 , Indução Enzimática , Oxirredutases Intramoleculares/biossíntese , Proteínas de Membrana , Camundongos , Prostaglandina-E Sintases , Células Estromais/enzimologia
16.
J Biochem ; 159(1): 133-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26229111

RESUMO

Amino-terminal enhancer of split (Aes) is a member of Groucho/Transducin-like enhancer (TLE) family. Aes is a recently found metastasis suppressor of colorectal cancer (CRC) that inhibits Notch signalling, and forms nuclear foci together with TLE1. Although some Notch-associated proteins are known to form subnuclear bodies, little is known regarding the dynamics or functions of these structures. Here, we show that Aes nuclear foci in CRC observed under an electron microscope are in a rather amorphous structure, lacking surrounding membrane. Investigation of their behaviour during the cell cycle by time-lapse cinematography showed that Aes nuclear foci dissolve during mitosis and reassemble after completion of cytokinesis. We have also found that heat shock cognate 70 (HSC70) is an essential component of Aes foci. Pharmacological inhibition of the HSC70 ATPase activity with VER155008 reduces Aes focus formation. These results provide insight into the understanding of Aes-mediated inhibition of Notch signalling.


Assuntos
Adenosina Trifosfatases/metabolismo , Núcleo Celular/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas Repressoras/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Animais , Núcleo Celular/ultraestrutura , Proteínas Correpressoras , Citocinese , Células HCT116 , Células HEK293 , Proteínas de Choque Térmico HSC70/antagonistas & inibidores , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Mitose , Nucleosídeos de Purina/farmacologia , Receptores Notch/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Imagem com Lapso de Tempo
17.
Biochim Biophys Acta ; 1585(2-3): 72-6, 2002 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-12531539

RESUMO

Phospolipase A(2) (PLA(2)) is the esterase activity that cleaves the sn-2 ester bond in glycerophospholipids, releasing free fatty acids and lysophospholipids. The PLA(2) activity is found in a variety of enzymes which can be divided in several types based on their Ca(2+) dependence for their activity; Ca(2+)-dependent secretory phosholipases (sPLA(2)s) and cytosolic phospholipases (cPLA(2)s), and Ca(2+)-independent phospholipase A(2)s (iPLA(2)s). These enzymes also show diverse size and substrate specificity (i.e., in the fatty acid chain length and extent of saturation). Among the fatty acids released by PLA(2), arachidonic acid (AA) is of particular biological importance, because it is subsequently converted to prostanoids and leukotrienes by cyclooxygenases (COX) and lipoxygenases (LOX), respectively. Free AA may also stimulate apoptosis through activation of sphingomyelinase. Alternatively, it is suggested that oxidized metabolites generated from AA by LOX induce apoptosis. Although the precise mechanisms remain to be elucidated, changes are observed in glycerolipid metabolism during apoptotic processes. In some cells induced to undergo apoptosis, AA is released concomitant with loss of cell viability, caspase activation and DNA fragmentation. Such AA releases appear to be mediated by activation of cPLA(2) and/or iPLA(2). For example, tumor necrosis factor-alpha (TNF-alpha)-induced cell death is mediated by cPLA(2), whereas Fas-induced apoptosis appears to be mediated by iPLA(2). Some discrepancies among early experimental results were probably caused by differences in the experimental conditions such as the serum concentration, inhibitors used that are not necessarily specific to a single-type enzyme, or differential expression of each PLA(2) in cells employed in the experiments. Recent studies eliminated such problems, by carefully defining the experimental conditions, and using multiple inhibitors that show different specificities. Accordingly, more convincing data are available that demonstrate involvement of some PLA(2)s in the apoptotic processes. In addition to cPLA(2) and iPLA(2), sPLA(2)s were recently found to play roles in apoptosis. Moreover, new proteins that appear to control PLA(2)s are being discovered. Here, the roles of PLA(2)s in apoptosis are discussed by reviewing recent reports.


Assuntos
Apoptose/fisiologia , Fosfolipases A/fisiologia , Animais , Linhagem Celular , Citosol/enzimologia , Humanos , Isoenzimas/fisiologia , Fosfolipases A/antagonistas & inibidores , Fosfolipases A/classificação , Receptores de Superfície Celular/metabolismo , Fator de Necrose Tumoral alfa
18.
Cancer Discov ; 5(2): 198-211, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25432929

RESUMO

UNLABELLED: We have recently identified a metastasis suppressor gene for colorectal cancer: AES/Aes, which encodes an endogenous inhibitor of NOTCH signaling. When Aes is knocked out in the adenomatous epithelium of intestinal polyposis mice, their tumors become malignant, showing marked submucosal invasion and intravasation. Here, we show that one of the genes induced by NOTCH signaling in colorectal cancer is DAB1/Dab1. Genetic depletion of DAB1 suppresses cancer invasion and metastasis in the NOTCH signaling-activated mice. DAB1 is phosphorylated by ABL tyrosine kinase, which activates ABL reciprocally. Consistently, inhibition of ABL suppresses cancer invasion in mice. Furthermore, we show that one of the targets of ABL is the RAC/RHOGEF protein TRIO, and that phosphorylation at its Tyr residue 2681 (pY2681) causes RHO activation in colorectal cancer cells. Its unphosphorylatable mutation TRIO Y2681F reduces RHOGEF activity and inhibits invasion of colorectal cancer cells. Importantly, TRIO pY2681 correlates with significantly poorer prognosis of patients with colorectal cancer after surgery. SIGNIFICANCE: These results indicate that TRIO pY2681 is one of the downstream effectors of NOTCH signaling activation in colorectal cancer, and can be a prognostic marker, helping to determine the therapeutic modality of patients with colorectal cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Notch/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias Colorretais/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Camundongos , Metástase Neoplásica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Receptores Notch/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais
19.
Cancer Cell ; 19(1): 125-37, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21251616

RESUMO

Metastasis is responsible for most cancer deaths. Here, we show that Aes (or Grg5) gene functions as an endogenous metastasis suppressor. Expression of Aes was decreased in liver metastases compared with primary colon tumors in both mice and humans. Aes inhibited Notch signaling by converting active Rbpj transcription complexes into repression complexes on insoluble nuclear matrix. In tumor cells, Notch signaling was triggered by ligands on adjoining blood vessels, and stimulated transendothelial migration. Genetic depletion of Aes in Apc(Δ716) intestinal polyposis mice caused marked tumor invasion and intravasation that were suppressed by Notch signaling inhibition. These results suggest that inhibition of Notch signaling can be a promising strategy for prevention and treatment of colon cancer metastasis.


Assuntos
Neoplasias do Colo/patologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Benzodiazepinonas/farmacologia , Benzodiazepinonas/uso terapêutico , Linhagem Celular Tumoral , Proteínas Correpressoras , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Regulação para Baixo/genética , Expressão Gênica/genética , Inativação Gênica/fisiologia , Células HCT116 , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Polipose Intestinal/tratamento farmacológico , Polipose Intestinal/metabolismo , Polipose Intestinal/patologia , Ligantes , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Nus , Camundongos Transgênicos , Modelos Biológicos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Matriz Nuclear/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Estromais/metabolismo , Fatores de Transcrição/genética , Migração Transendotelial e Transepitelial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA