Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 505(7484): 546-9, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24352233

RESUMO

Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant's potential in energy biotechnology.


Assuntos
Beta vulgaris/genética , Produtos Agrícolas/genética , Genoma de Planta/genética , Biocombustíveis/provisão & distribuição , Metabolismo dos Carboidratos , Cromossomos de Plantas/genética , Etanol/metabolismo , Genômica , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Spinacia oleracea/genética
2.
BMC Plant Biol ; 14: 249, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25249410

RESUMO

BACKGROUND: The R2R3-MYB genes comprise one of the largest transcription factor gene families in plants, playing regulatory roles in plant-specific developmental processes, metabolite accumulation and defense responses. Although genome-wide analysis of this gene family has been carried out in some species, the R2R3-MYB genes in Beta vulgaris ssp. vulgaris (sugar beet) as the first sequenced member of the order Caryophyllales, have not been analysed heretofore. RESULTS: We present a comprehensive, genome-wide analysis of the MYB genes from Beta vulgaris ssp. vulgaris (sugar beet) which is the first species of the order Caryophyllales with a sequenced genome. A total of 70 R2R3-MYB genes as well as genes encoding three other classes of MYB proteins containing multiple MYB repeats were identified and characterised with respect to structure and chromosomal organisation. Also, organ specific expression patterns were determined from RNA-seq data. The R2R3-MYB genes were functionally categorised which led to the identification of a sugar beet-specific clade with an atypical amino acid composition in the R3 domain, putatively encoding betalain regulators. The functional classification was verified by experimental confirmation of the prediction that the R2R3-MYB gene Bv_iogq encodes a flavonol regulator. CONCLUSIONS: This study provides the first step towards cloning and functional dissection of the role of MYB transcription factor genes in the nutritionally and evolutionarily interesting species B. vulgaris. In addition, it describes the flavonol regulator BvMYB12, being the first sugar beet R2R3-MYB with an experimentally proven function.


Assuntos
Beta vulgaris/genética , Genoma de Planta/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Beta vulgaris/metabolismo , Mapeamento Cromossômico , Flavonóis/metabolismo , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/genética
3.
Plant Cell ; 23(9): 3117-28, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21908723

RESUMO

Short interspersed nuclear elements (SINEs) are non-long terminal repeat retrotransposons that are highly abundant, heterogeneous, and mostly not annotated in eukaryotic genomes. We developed a tool designated SINE-Finder for the targeted discovery of tRNA-derived SINEs. We analyzed sequence data of 16 plant genomes, including 13 angiosperms and three gymnosperms and identified 17,829 full-length and truncated SINEs falling into 31 families showing the widespread occurrence of SINEs in higher plants. The investigation focused on potato (Solanum tuberosum), resulting in the detection of seven different SolS SINE families consisting of 1489 full-length and 870 5' truncated copies. Consensus sequences of full-length members range in size from 106 to 244 bp depending on the SINE family. SolS SINEs populated related species and evolved separately, which led to some distinct subfamilies. Solanaceae SINEs are dispersed along chromosomes and distributed without clustering but with preferred integration into short A-rich motifs. They emerged more than 23 million years ago and were species specifically amplified during the radiation of potato, tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum). We show that tobacco TS retrotransposons are composite SINEs consisting of the 3' end of a long interspersed nuclear element integrated downstream of a nonhomologous SINE family followed by successfully colonization of the genome. We propose an evolutionary scenario for the formation of TS as a spontaneous event, which could be typical for the emergence of SINE families.


Assuntos
Evolução Molecular , Genoma de Planta , Elementos Nucleotídeos Curtos e Dispersos , Sequência de Bases , Hibridização Genômica Comparativa , Biologia Computacional , Sequência Consenso , DNA de Plantas/genética , Mineração de Dados , Hibridização in Situ Fluorescente , Solanum lycopersicum/genética , Dados de Sequência Molecular , Filogenia , Retroelementos , Análise de Sequência de DNA , Solanum tuberosum/genética , Nicotiana/genética
4.
Plant J ; 70(3): 528-40, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22211633

RESUMO

Sugar beet (Beta vulgaris) is an important crop plant that accounts for 30% of the world's sugar production annually. The genus Beta is a distant relative of currently sequenced taxa within the core eudicotyledons; the genomic characterization of sugar beet is essential to make its genome accessible to molecular dissection. Here, we present comprehensive genomic information in genetic and physical maps that cover all nine chromosomes. Based on this information we identified the proposed ancestral linkage groups of rosids and asterids within the sugar beet genome. We generated an extended genetic map that comprises 1127 single nucleotide polymorphism markers prepared from expressed sequence tags and bacterial artificial chromosome (BAC) end sequences. To construct a genome-wide physical map, we hybridized gene-derived oligomer probes against two BAC libraries with 9.5-fold cumulative coverage of the 758 Mbp genome. More than 2500 probes and clones were integrated both in genetic maps and the physical data. The final physical map encompasses 535 chromosomally anchored contigs that contains 8361 probes and 22 815 BAC clones. By using the gene order established with the physical map, we detected regions of synteny between sugar beet (order Caryophyllales) and rosid species that involves 1400-2700 genes in the sequenced genomes of Arabidopsis, poplar, grapevine, and cacao. The data suggest that Caryophyllales share the palaeohexaploid ancestor proposed for rosids and asterids. Taken together, we here provide extensive molecular resources for sugar beet and enable future high-resolution trait mapping, gene identification, and cross-referencing to regions sequenced in other plant species.


Assuntos
Beta vulgaris/genética , Mapeamento Cromossômico , Evolução Molecular , Genoma de Planta/genética , Genômica , Sequência de Bases , Cromossomos Artificiais Bacterianos , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Genes de Plantas/genética , Ligação Genética , Marcadores Genéticos/genética , Magnoliopsida/genética , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Análise de Sequência de DNA , Sintenia/genética
5.
Mol Genet Genomics ; 287(3): 247-59, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22258113

RESUMO

Wild Vitis species are dioecious plants, while the cultivated counterpart, Vitis vinifera subspec. vinifera, generally shows hermaphroditic flowers. In Vitis the genetic determinants of flower sex have previously been mapped to a region on chromosome 2. In a combined strategy of map-based cloning and the use of the publicly available grapevine reference genome sequence, the structure of the grapevine flower sex locus has been elucidated with the subsequent identification of candidate genes which might be involved in the development of the different flower sex types. In a fine mapping approach, the sex locus in grapevine was narrowed down using a population derived from a cross of a genotype with a Vitis vinifera background ('Schiava Grossa' × 'Riesling') with the male rootstock cv. 'Börner' (V. riparia × V. cinerea). A physical map of 143 kb was established from BAC clones spanning the 0.5 cM region defined by the closest flanking recombination break points. Sequencing and gene annotation of the entire region revealed several candidate genes with a potential impact on flower sex formation. One of the presumed candidate genes, an adenine phosphoribosyltransferase, was analysed in more detail. The results led to the development of a marker for the presence or absence of the female alleles, while the male and hermaphroditic alleles are still to be differentiated. The impact of other candidate genes is discussed, especially with regard to plant hormone actions. The markers developed will permit the selection of female breeding lines which do not require laborious emasculation thus considerably simplifying grapevine breeding. The genetic finger prints displayed that our cultivated grapevines frequently carry a female allele while homozygous hermaphrodites are rare.


Assuntos
Flores/genética , Genes de Plantas , Loci Gênicos , Vitis/genética , Adenina Fosforribosiltransferase/genética , Alelos , Sequência de Aminoácidos , Ordem dos Genes , Marcadores Genéticos , Íntrons , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Alinhamento de Sequência
6.
Genome Biol ; 16: 184, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26328666

RESUMO

We develop a method to predict and validate gene models using PacBio single-molecule, real-time (SMRT) cDNA reads. Ninety-eight percent of full-insert SMRT reads span complete open reading frames. Gene model validation using SMRT reads is developed as automated process. Optimized training and prediction settings and mRNA-seq noise reduction of assisting Illumina reads results in increased gene prediction sensitivity and precision. Additionally, we present an improved gene set for sugar beet (Beta vulgaris) and the first genome-wide gene set for spinach (Spinacia oleracea). The workflow and guidelines are a valuable resource to obtain comprehensive gene sets for newly sequenced genomes of non-model eukaryotes.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Beta vulgaris/genética , DNA Complementar/química , Genes de Plantas , Dados de Sequência Molecular , Spinacia oleracea/genética
7.
PLoS One ; 9(10): e110113, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302600

RESUMO

Molecular markers are a highly valuable tool for creating genetic maps. Like in many other crops, sugar beet (Beta vulgaris L.) breeding is increasingly supported by the application of such genetic markers. Single nucleotide polymorphism (SNP) based markers have a high potential for automated analysis and high-throughput genotyping. We developed a bioinformatics workflow that uses Sanger and 2nd-generation sequence data for detection, evaluation and verification of new transcript-associated SNPs from sugar beet. RNAseq data from one parent of an established mapping population were produced by 454-FLX sequencing and compared to Sanger ESTs derived from the other parent. The workflow established for SNP detection considers the quality values of both types of reads, provides polymorphic alignments as well as selection criteria for reliable SNP detection and allows painless generation of new genetic markers within genes. We obtained a total of 14,323 genic SNPs and InDels. According to empirically optimised settings for the quality parameters, we classified these SNPs into four usability categories. Validation of a subset of the in silico detected SNPs by genotyping the mapping population indicated a high success rate of the SNP detection. Finally, a total of 307 new markers were integrated with existing data into a new genetic map of sugar beet which offers improved resolution and the integration of terminal markers.


Assuntos
Beta vulgaris/genética , Polimorfismo Genético , Mapeamento Cromossômico , Biologia Computacional , Evolução Molecular , Etiquetas de Sequências Expressas , Loci Gênicos , Marcadores Genéticos , Genoma de Planta , Genômica , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA
8.
Genome Res ; 13(6A): 1250-7, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12799357

RESUMO

Genetic markers such as single nucleotide polymorphisms (SNPs) are essential tools for positional cloning, association, or quantitative trait locus mapping and the determination of genetic relationships between individuals. We identified and characterized a genome-wide set of SNP markers by generating 10,706 expressed sequence tags (ESTs) from cDNA libraries derived from 6 different accessions, and by analysis of 606 sequence tagged sites (STS) from up to 12 accessions of the model flowering plant Arabidopsis thaliana. The cDNA libraries for EST sequencing were made from individuals that were stressed by various means to enrich for transcripts from genes expressed under such conditions. SNPs discovered in these sequences may be useful markers for mapping genes involved in interactions with the biotic and abiotic environment. The STS loci are distributed randomly over the genome. By comparison with the Col-0 genome sequence, we identified a total of 8051 SNPs and 637 insertion/deletion polymorphisms (InDel). Analysis of STS-derived SNPs shows that most SNPs are rare, but that it is possible to identify intermediate frequency framework markers that can be used for genetic mapping in many different combinations of accessions. A substantial proportion of SNPs located in ORFs caused a change of the encoded amino acid. A comparison of the density of our SNP markers among accessions in both the EST and STS datasets, revealed that Cvi-0 is the most divergent accession from Col-0 among the 12 accessions studied. All of these markers are freely available via the internet.


Assuntos
Arabidopsis/genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único/genética , Biologia Computacional/métodos , DNA de Plantas/genética , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Variação Genética/genética , Dados de Sequência Molecular , Análise de Sequência de DNA/métodos , Sitios de Sequências Rotuladas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA