RESUMO
Rapid phenotypic antimicrobial susceptibility testing (AST) requires the enrichment of live bacteria from patient samples, which is particularly challenging in the context of life-threatening bloodstream infections (BSIs) due to low bacterial titers. Over two decades, an extensive array of pathogen-specific biomolecules has been identified to capture live bacteria. The prevailing biomolecules are immune proteins of the complement system, antibodies, aptamers, phage proteins, and antimicrobial peptides. These biomolecules differ by their binder generation technologies and exhibit highly variable specificities, ranging from bacterial strains to most pathogenic bacteria. Here, we summarize how these diverse biomolecules were identified, list examples of successfully reported capture assays, and provide an outlook on the use of nanobodies raised against conserved surface-accessible proteins as promising biomolecules for pathogen capture.
Assuntos
Bactérias , Bacteriófagos , HumanosRESUMO
Drug-ID is a novel method applying proximity biotinylation to identify drug-protein interactions inside living cells. The covalent conjugation of a drug with a biotin ligase enables targeted biotinylation and identification of the drug-bound proteome. We established Drug-ID for two small-molecule drugs, JQ1 and SAHA, and applied it for RNaseH-recruiting antisense oligonucleotides (ASOs). Drug-ID profiles the drug-protein interactome de novo under native conditions, directly inside living cells and at pharmacologically effective drug concentrations. It requires minimal amounts of cell material and might even become applicable in vivo. We studied the dose-dependent aggregation of ASOs and the effect of different wing chemistries (locked nucleic acid, 2'-methoxyethyl and 2'-Fluoro) and ASO lengths on the interactome. Finally, we demonstrate the detection of stress-induced, intracellular interactome changes (actinomycin D treatment) with an in situ variant of the approach, which uses a recombinant biotin ligase and does not require genetic manipulation of the target cell.
Assuntos
Biotinilação , Humanos , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/química , Ribonuclease H/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Biotina/metabolismo , Biotina/química , Ligação ProteicaRESUMO
The ongoing COVID-19 pandemic represents an unprecedented global health crisis. Here, we report the identification of a synthetic nanobody (sybody) pair, Sb#15 and Sb#68, that can bind simultaneously to the SARS-CoV-2 spike RBD and efficiently neutralize pseudotyped and live viruses by interfering with ACE2 interaction. Cryo-EM confirms that Sb#15 and Sb#68 engage two spatially discrete epitopes, influencing rational design of bispecific and tri-bispecific fusion constructs that exhibit up to 100- and 1,000-fold increase in neutralization potency, respectively. Cryo-EM of the sybody-spike complex additionally reveals a novel up-out RBD conformation. While resistant viruses emerge rapidly in the presence of single binders, no escape variants are observed in the presence of the bispecific sybody. The multivalent bispecific constructs further increase the neutralization potency against globally circulating SARS-CoV-2 variants of concern. Our study illustrates the power of multivalency and biparatopic nanobody fusions for the potential development of therapeutic strategies that mitigate the emergence of new SARS-CoV-2 escape mutants.
Assuntos
Tratamento Farmacológico da COVID-19 , Anticorpos de Domínio Único , Anticorpos Neutralizantes , Anticorpos Antivirais/metabolismo , Resistência a Medicamentos , Humanos , Pandemias , Ligação Proteica , SARS-CoV-2/genética , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/farmacologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
Transmembrane E3 ligases play crucial roles in homeostasis. Much protein and organelle quality control, and metabolic regulation, are determined by ER-resident MARCH6 E3 ligases, including Doa10 in yeast. Here, we present Doa10/MARCH6 structural analysis by cryo-EM and AlphaFold predictions, and a structure-based mutagenesis campaign. The majority of Doa10/MARCH6 adopts a unique circular structure within the membrane. This channel is established by a lipid-binding scaffold, and gated by a flexible helical bundle. The ubiquitylation active site is positioned over the channel by connections between the cytosolic E3 ligase RING domain and the membrane-spanning scaffold and gate. Here, by assaying 95 MARCH6 variants for effects on stability of the well-characterized substrate SQLE, which regulates cholesterol levels, we reveal crucial roles of the gated channel and RING domain consistent with AlphaFold-models of substrate-engaged and ubiquitylation complexes. SQLE degradation further depends on connections between the channel and RING domain, and lipid binding sites, revealing how interconnected Doa10/MARCH6 elements could orchestrate metabolic signals, substrate binding, and E3 ligase activity.
Assuntos
Bioensaio , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Sítios de Ligação , Saccharomyces cerevisiae/genética , LipídeosRESUMO
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the 'up' ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.