Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 10(5): e1004347, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24785424

RESUMO

Reduced supply of the amino acid methionine increases longevity across species through an as yet elusive mechanism. Here, we report that methionine restriction (MetR) extends yeast chronological lifespan in an autophagy-dependent manner. Single deletion of several genes essential for autophagy (ATG5, ATG7 or ATG8) fully abolished the longevity-enhancing capacity of MetR. While pharmacological or genetic inhibition of TOR1 increased lifespan in methionine-prototroph yeast, TOR1 suppression failed to extend the longevity of methionine-restricted yeast cells. Notably, vacuole-acidity was specifically enhanced by MetR, a phenotype that essentially required autophagy. Overexpression of vacuolar ATPase components (Vma1p or Vph2p) suffices to increase chronological lifespan of methionine-prototrophic yeast. In contrast, lifespan extension upon MetR was prevented by inhibition of vacuolar acidity upon disruption of the vacuolar ATPase. In conclusion, autophagy promotes lifespan extension upon MetR and requires the subsequent stimulation of vacuolar acidification, while it is epistatic to the equally autophagy-dependent anti-aging pathway triggered by TOR1 inhibition or deletion.


Assuntos
Ácidos/metabolismo , Autofagia , Longevidade , Metionina/administração & dosagem , Saccharomyces cerevisiae/fisiologia , Vacúolos/metabolismo , Deleção de Genes , Genes Fúngicos , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/imunologia , Saccharomyces cerevisiae/metabolismo
2.
Eukaryot Cell ; 12(2): 254-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23243062

RESUMO

The human fungal pathogen Candida albicans can grow at temperatures of up to 45°C. Here, we show that at 42°C substantially less biomass was formed than at 37°C. The cells also became more sensitive to wall-perturbing compounds, and the wall chitin levels increased, changes that are indicative of wall stress. Quantitative mass spectrometry of the wall proteome using (15)N metabolically labeled wall proteins as internal standards revealed that at 42°C the levels of the ß-glucan transglycosylases Phr1 and Phr2, the predicted chitin transglycosylases Crh11 and Utr2, and the wall maintenance protein Ecm33 increased. Consistent with our previous results for fluconazole stress, this suggests that a wall-remodeling response is mounted to relieve wall stress. Thermal stress as well as different wall and membrane stressors led to an increased phosphorylation of the mitogen-activated protein (MAP) kinase Mkc1, suggesting activation of the cell wall integrity (CWI) pathway. Furthermore, all wall and membrane stresses tested resulted in diminished cell separation. This was accompanied by decreased secretion of the major chitinase Cht3 and the endoglucanase Eng1 into the medium. Consistent with this, cht3 cells showed a similar phenotype. When treated with exogenous chitinase, cell clusters both from stressed cells and mutant strains were dispersed, underlining the importance of Cht3 for cell separation. We propose that surface stresses lead to a conserved cell wall remodeling response that is mainly governed by Mkc1 and is characterized by chitin reinforcement of the wall and the expression of remedial wall remodeling enzymes.


Assuntos
Candida albicans/fisiologia , Parede Celular/metabolismo , Candida albicans/citologia , Quitina/metabolismo , Quitinases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Estresse Fisiológico
3.
Microbiology (Reading) ; 159(Pt 8): 1673-1682, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23728625

RESUMO

The opportunistic fungal pathogen Candida albicans has developed various ways to overcome iron restriction in a mammalian host. Using different surface proteins, among them membrane- and wall-localized glycosylphosphatidylinositol (GPI) proteins, it can exploit iron from host haemoglobin, ferritin and transferrin. Culturing C. albicans in rich medium supplemented with the ferrous iron chelator bathophenanthroline disulfonic acid or in the minimal medium yeast nitrogen base resulted in a strong decrease of the iron content of the cells. MS analysis of the changes in the wall proteome of C. albicans upon iron restriction showed a strong increase in the levels of the GPI-modified adhesin Als3, which also serves as a ferritin receptor, and of the GPI-modified CFEM (common in fungal extracellular membranes) domain-containing proteins Csa1, Pga7, Pga10, and Rbt5. The wall levels of the GPI-modified proteins Hyr1, the adhesin Als4 and the copper- and zinc-containing superoxide dismutase Sod4 also strongly increased, whereas the levels of Tos1 (a non-GPI protein) and the GPI-modified adhesin Als2 strongly decreased. Strikingly, peptides derived from the CFEM domain of the haem-binding proteins Csa1, Pga10 and Rbt5 were capable of forming iron adduct ions during MS analysis, consistent with a key role of this domain in haem binding.


Assuntos
Candida albicans/química , Candida albicans/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Proteínas Fúngicas/análise , Ferro/metabolismo , Proteoma/análise , Candida albicans/crescimento & desenvolvimento , Meios de Cultura/química , Perfilação da Expressão Gênica , Espectrometria de Massas , Proteínas de Membrana/análise
4.
Proteomics ; 12(21): 3164-79, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22997008

RESUMO

The major fungal pathogen Candida albicans can occupy diverse microenvironments in its human host. During colonization of the gastrointestinal or urogenital tracts, mucosal surfaces, bloodstream, and internal organs, C. albicans thrives in niches that differ with respect to available nutrients and local environmental stresses. Although most studies are performed on glucose-grown cells, changes in carbon source dramatically affect cell wall architecture, stress responses, and drug resistance. We show that growth on the physiologically relevant carboxylic acid, lactate, has a significant impact on the C. albicans cell wall proteome and secretome. The regulation of cell wall structural proteins (e.g. Cht1, Phr1, Phr2, Pir1) correlated with extensive cell wall remodeling in lactate-grown cells and with their increased resistance to stresses and antifungal drugs, compared with glucose-grown cells. Moreover, changes in other proteins (e.g. Als2, Gca1, Phr1, Sap9) correlated with the increased adherence and biofilm formation of lactate-grown cells. We identified mating and pheromone-regulated proteins that were exclusive to lactate-grown cells (e.g. Op4, Pga31, Pry1, Scw4, Yps7) as well as mucosa-specific and other niche-specific factors such as Lip4, Pga4, Plb5, and Sap7. The analysis of the corresponding null mutants confirmed that many of these proteins contribute to C. albicans adherence, stress, and antifungal drug resistance. Therefore, the cell wall proteome and secretome display considerable plasticity in response to carbon source. This plasticity influences important fitness and virulence attributes known to modulate the behavior of C. albicans in different host microenvironments during infection.


Assuntos
Candida albicans/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Proteoma/metabolismo , Antifúngicos/farmacologia , Biofilmes , Candida albicans/metabolismo , Candida albicans/fisiologia , Parede Celular/química , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Farmacorresistência Fúngica , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Testes de Sensibilidade Microbiana , Pressão Osmótica , Fenótipo , Proteoma/efeitos dos fármacos , Estresse Fisiológico
5.
Eukaryot Cell ; 10(8): 1071-81, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21622905

RESUMO

Fluconazole is a commonly used antifungal drug that inhibits Erg11, a protein responsible for 14α-demethylation during ergosterol synthesis. Consequently, ergosterol is depleted from cellular membranes and replaced by toxic 14α-methylated sterols, which causes increased membrane fluidity and drug permeability. Surface-grown and planktonic cultures of Candida albicans responded similarly to fluconazole at 0.5 mg/liter, showing reduced biomass formation, severely reduced ergosterol levels, and almost complete inhibition of hyphal growth. There was no evidence of cell leakage. Mass spectrometric analysis of the secretome showed that its composition was strongly affected and included 17 fluconazole-specific secretory proteins. Relative quantification of (14)N-labeled query walls relative to a reference standard mixture of (15)N-labeled yeast and hyphal walls in combination with immunological analysis revealed considerable fluconazole-induced changes in the wall proteome as well. They were, however, similar for both surface-grown and planktonic cultures. Two major trends emerged: (i) decreased incorporation of hypha-associated wall proteins (Als3, Hwp1, and Plb5), consistent with inhibition of hyphal growth, and (ii) increased incorporation of putative wall repair-related proteins (Crh11, Pga4, Phr1, Phr2, Pir1, and Sap9). As exposure to the wall-perturbing drug Congo red led to a similar response, these observations suggested that fluconazole affects the wall. In keeping with this, the resistance of fluconazole-treated cells to wall-perturbing compounds decreased. We propose that fluconazole affects the integrity of both the cellular membranes and the fungal wall and discuss its potential consequences for antifungal therapy. We also present candidate proteins from the secretome for clinical marker development.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Parede Celular/metabolismo , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Hifas/efeitos dos fármacos , Sequência de Aminoácidos , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Parede Celular/efeitos dos fármacos , Análise de Fourier , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Fragmentos de Peptídeos/química
6.
Microbiology (Reading) ; 157(Pt 8): 2297-2307, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21602216

RESUMO

The ability of Candida albicans to switch from yeast to hyphal growth is essential for its virulence. The walls and especially the covalently attached wall proteins are involved in the primary host-pathogen interactions. Three hyphal induction methods were compared, based on fetal calf serum, the amino sugar N-acetylglucosamine (GlcNAc) and the mammalian cell culture medium Iscove's modified Dulbecco's medium (IMDM). GlcNAc and IMDM were preferred, allowing stable hyphal growth over a prolonged period without significant reversion to yeast growth and with high biomass yields. We employed Fourier transform-MS combined with a (15)N-metabolically labelled reference culture as internal standard for relative quantification of changes in the wall proteome upon hyphal induction. A total of 21 wall proteins were quantified. Our induction methods triggered a similar response characterized by (i) a category of wall proteins showing strongly increased incorporation levels (Als3, Hwp2, Hyr1, Plb5 and Sod5), (ii) another category with strongly decreased levels (Rhd3, Sod4 and Ywp1) and (iii) a third one enriched for carbohydrate-active enzymes (including Cht2, Crh11, Mp65, Pga4, Phr1, Phr2 and Utr2) and showing only a limited response. This is, to our knowledge, the first systematic, quantitative analysis of the changes in the wall proteome of C. albicans upon hyphal induction. Finally, we propose new wall-protein-derived candidates for vaccine development.


Assuntos
Candida albicans/química , Candida albicans/crescimento & desenvolvimento , Parede Celular/química , Proteínas Fúngicas/análise , Regulação Fúngica da Expressão Gênica , Hifas/química , Hifas/crescimento & desenvolvimento , Meios de Cultura/química , Humanos , Proteoma/análise , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Yeast ; 27(8): 661-72, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20641015

RESUMO

The pathogenic fungus Candida albicans secretes a considerable number of hydrolases and other proteins. In-depth studies of the C. albicans secretome could thus provide new candidates for diagnostic markers and vaccine development. We compared various growth conditions differing in pH, temperature and the presence of the hyphal inducer N-acetylglucosamine. The polypeptide content of the growth media was ca. 0.1-0.2% of the total biomass. Using LC-tandem mass spectrometry, we identified 44 secretory proteins, the transmembrane protein Msb2, six secretory pathway-associated proteins and 28 predicted cytosolic proteins. Many secretory proteins are wall-related, suggesting that their presence in the growth medium is at least partially due to accidental release from the walls. Als3, Csa2, Rbt4, Sap4 and Sap6 were enriched in the medium of hyphal cultures; Bgl2, Cht3, Dag7, Eng1, Pir1, Rbe1, Scw11, Sim1/Sun42, Xog1 and Ywp1 in the medium of yeast cells; and Plb4.5 in pH 4 medium. Seven proteins (Cht3, Mp65, Orf19.5063/Coi1, Scw11, Sim1, Sun41 and Tos1) were consistently present under all conditions tested. These observations indicate that C. albicans tightly regulates its secretome. Mp65, Sun41, and Tos1 were each predicted to contain at least one highly immunogenic peptide. In total, we identified 29 highly immunogenic peptides originating from 18 proteins, including two members of the family of secreted aspartyl proteases. Fifty-six peptides were identified as proteotypic and will be useful for quantification purposes. In summary, the number of identified secretory proteins in the growth medium has been substantially extended, and growth conditions strongly affect the composition of the secretome.


Assuntos
Candida albicans/metabolismo , Meios de Cultura/química , Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Proteoma/análise , Antígenos de Fungos/análise , Antígenos de Fungos/imunologia , Antígenos de Fungos/metabolismo , Candida albicans/crescimento & desenvolvimento , Cromatografia Líquida , Proteínas Fúngicas/imunologia , Humanos , Espectrometria de Massas em Tandem
8.
Yeast ; 27(8): 647-60, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20641021

RESUMO

In many ascomycetous yeasts, the cell wall is composed of two main types of macromolecules: (a) polysaccharides, with a high content of beta-1,6- and beta-1,3-linked glucan chains and minor amounts of chitin; and (b) cell wall proteins of different types. Synthesis and maintenance of these macromolecules respond to environmental changes, which are sensed by the cell wall integrity (CWI) signal transduction pathway. We here present a first systematic analysis of the cell wall composition of the milk yeast, Kluyveromyces lactis. Electron microscopic analyses revealed that exponentially growing cells of K. lactis supplied with glucose as a carbon source have a wall thickness of 64 nm, as compared to 105 nm when growing on 3% ethanol. Despite their increased wall thickness, ethanol-grown cells were more sensitive to the presence of zymolyase in the growth medium. Mass spectrometric analysis identified 22 covalently linked cell wall proteins, including 19 GPI-modified proteins and two Pir wall proteins. Importantly, the composition of the cell wall glycoproteome depended on carbon source and growth phase. Our results clearly illustrate the dynamic nature of the cell wall of K. lactis and provide a firm base for studying its regulation.


Assuntos
Parede Celular/química , Proteínas Fúngicas/análise , Glicoproteínas/análise , Kluyveromyces/química , Proteoma/análise , Carbono/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Meios de Cultura/química , Etanol/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Glucose/metabolismo , Kluyveromyces/metabolismo , Kluyveromyces/ultraestrutura , Espectrometria de Massas , Microscopia Eletrônica
10.
Microb Cell ; 1(5): 160-162, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28357240

RESUMO

Methionine restriction (MetR) is one of the rare regimes that prolongs lifespan across species barriers. Using a yeast model, we recently demonstrated that this lifespan extension is promoted by autophagy, which in turn requires vacuolar acidification. Our study is the first to place autophagy as one of the major players required for MetR-mediated longevity. In addition, our work identifies vacuolar acidification as a key downstream element of autophagy induction under MetR, and possibly after rapamycin treatment. Unlike other amino acids, methionine plays pleiotropic roles in many metabolism-relevant pathways. For instance, methionine (i) is the N-terminal amino acid of every newly translated protein; (ii) acts as the central donor of methyl groups through S-adenosyl methionine (SAM) during methylation reactions of proteins, DNA or RNA; and (iii) provides the sulfhydryl groups for FeS-cluster formation and redox detoxification via transsulfuration to cysteine. Intriguingly, MetR causes lifespan extension, both in yeast and in rodents. We could show that in Saccharomyces cerevisiae, chronological lifespan (CLS) is increased in two specific methionine-auxotrophic strains (namely Δmet2 and Δmet15).

11.
FEMS Microbiol Lett ; 338(1): 10-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23170918

RESUMO

The opportunistic fungal pathogen Candida albicans occupies various niches of the human body such as the skin and the mucosal surfaces of the gastrointestinal and urogenital tracts. It can also enter the blood stream and cause deadly, systemic infections, especially in immunocompromised patients, but also in immunocompetent individuals through inserted medical devices. To survive in these diverse host environments, C. albicans has developed specialized virulence attributes and rapidly adapts itself to local growth conditions and defense mechanisms. Candida albicans secretes a considerable number of proteins that are involved in biofilm formation, tissue invasion, immune evasion, and wall maintenance, as well as acquisition of nutrients including metal ions. The secretome of C. albicans is predicted to comprise 225 proteins. On a proteomic level, however, analysis of the secretome of C. albicans is incomplete as many secreted proteins are only produced under certain conditions. Interestingly, glycosylphosphatidylinositol proteins and known cytoplasmic proteins are also consistently detected in the growth medium. Importantly, a core set of seven wall polysaccharide-processing enzymes seems to be consistently present, including the diagnostic marker Mp65. Overall, we discuss the importance of the secretome for virulence and suggest potential targets for better and faster diagnostic methods.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Meios de Cultura , Feminino , Proteínas Fúngicas/genética , Humanos , Masculino , Proteômica , Virulência
12.
Eur J Cell Biol ; 92(12): 383-95, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24486034

RESUMO

The trimeric SNF1 complex from Saccharomyces cerevisiae, a homolog of mammalian AMP-activated kinase, has been primarily implicated in signaling for the utilization of alternative carbon sources to glucose. We here find that snf1 deletion mutants are hypersensitive to different cell wall stresses, such as the presence of Calcofluor white, Congo red, Zymolyase or the glucan synthase inhibitor Caspofungin in the growth medium. They also have a thinner cell wall. Caspofungin treatment triggers the phosphorylation of the catalytic Snf1 kinase subunit at Thr210 and removal of this phosphorylation site by mutagenesis (Snf1-T210A) abolishes the function of Snf1 in cell wall integrity. Deletion of the PFK1 gene encoding the α-subunit of the heterooctameric yeast phosphofructokinase suppresses the cell wall phenotypes of a snf1 deletion, which suggests a compensatory effect of central carbohydrate metabolism. Epistasis analyses with mutants in cell wall integrity (CWI) signaling confirm that the SNF1 complex and the CWI pathway independently affect yeast cell integrity.


Assuntos
Parede Celular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
13.
Mol Biosyst ; 8(3): 902-12, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22271309

RESUMO

Neothyonidioside is a triterpene glycoside (TG) isolated from the sea cucumber, Australostichopus mollis, that is potently cytotoxic to S. cerevisiae, but does not permeabilize cellular membranes. We mutagenized S. cerevisiae and isolated a neothionidioside-resistant (neo(R)) strain. Using synthetic genetic array mapping and sequencing, we identified NCP1 as the resistance locus. Quantitative HPLC revealed that neo(R)/ncp1 mutants have reduced ergosterol content. Ergosterol added to growth media reversed toxicity, demonstrating that neothionidioside binds directly to ergosterol, similar to the polyene natamycin. Ergosterol synthesis inhibitors ketoconazole and atorvastatin conferred resistance to neothionidioside in a dose-dependent manner showing that a threshold ergosterol concentration is required for toxicity. A genome-wide screen of deletion mutants against neothionidioside revealed hypersensitivity of many of the component genes in the ESCRT complexes relating to multivesicular body formation. Confocal microscopy of cells stained with a vital dye showed blockage at this step. Thus, we propose neothionidioside may affect membrane curvature and fusion capability in the endosome-vacuole pathway.


Assuntos
Antifúngicos/farmacologia , Glicosídeos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Pepinos-do-Mar/metabolismo , Triterpenos/farmacologia , Animais , Farmacorresistência Fúngica/genética , Ergosterol/metabolismo , Ergosterol/farmacologia , Microscopia Confocal , Mutação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Pepinos-do-Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA