Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(27): E3600-8, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100877

RESUMO

Protease-activated receptor-1 (PAR1) is a G-protein-coupled receptor (GPCR) for the coagulant protease thrombin. Similar to other GPCRs, PAR1 is promiscuous and couples to multiple heterotrimeric G-protein subtypes in the same cell and promotes diverse cellular responses. The molecular mechanism by which activation of a given GPCR with the same ligand permits coupling to multiple G-protein subtypes is unclear. Here, we report that N-linked glycosylation of PAR1 at extracellular loop 2 (ECL2) controls G12/13 versus Gq coupling specificity in response to thrombin stimulation. A PAR1 mutant deficient in glycosylation at ECL2 was more effective at stimulating Gq-mediated phosphoinositide signaling compared with glycosylated wildtype receptor. In contrast, wildtype PAR1 displayed a greater efficacy at G12/13-dependent RhoA activation compared with mutant receptor lacking glycosylation at ECL2. Endogenous PAR1 rendered deficient in glycosylation using tunicamycin, a glycoprotein synthesis inhibitor, also exhibited increased PI signaling and diminished RhoA activation opposite to native receptor. Remarkably, PAR1 wildtype and glycosylation-deficient mutant were equally effective at coupling to Gi and ß-arrestin-1. Consistent with preferential G12/13 coupling, thrombin-stimulated PAR1 wildtype strongly induced RhoA-mediated stress fiber formation compared with mutant receptor. In striking contrast, glycosylation-deficient PAR1 was more effective at increasing cellular proliferation, associated with Gq signaling, than wildtype receptor. These studies suggest that N-linked glycosylation at ECL2 contributes to the stabilization of an active PAR1 state that preferentially couples to G12/13 versus Gq and defines a previously unidentified function for N-linked glycosylation of GPCRs in regulating G-protein signaling bias.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais , Algoritmos , Animais , Sítios de Ligação/genética , Células COS , Chlorocebus aethiops , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Glicosilação , Células HeLa , Humanos , Immunoblotting , Camundongos Knockout , Mutação , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Receptor PAR-1/genética , Trombina/farmacologia , Timidina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Mol Pharmacol ; 88(1): 95-105, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934730

RESUMO

Thrombin, the key effector protease of the coagulation cascade, drives fibrin deposition and activates human platelets through protease-activated receptor-1 (PAR1). These processes are critical to the progression of thrombotic diseases. Thrombin is the main target of anticoagulant therapy, and major efforts have led to the discovery of new oral direct inhibitors of thrombin. Dabigatran is the first oral anticoagulant licensed for the prevention of thromboembolisms associated with orthopedic surgery and stroke prevention in atrial fibrillation. Dabigatran is a direct thrombin inhibitor that effectively blocks thrombin's catalytic activity but does not preclude thrombin's exosites and binding to fibrinogen. Thus, we hypothesized that catalytically inactive thrombin retains the capacity to bind to PAR1 through exosite-I and may modulate its function independent of receptor cleavage and activation. Here, we report that dabigatran at clinically relevant concentrations is an effective and acute inhibitor of thrombin-induced PAR1 cleavage, activation, internalization, and ß-arrestin recruitment in vitro. Interestingly, prolonged exposure to catalytic inactive thrombin incubated with dabigatran at 20-fold higher therapeutic concentration resulted in increased PAR1 cell-surface expression, which correlated with higher detectable levels of ubiquitinated receptor. These findings are consistent with ubiquitin function as a negative regulator of PAR1 constitutive internalization. Increased PAR1 expression also enhanced agonist-induced phosphoinositide hydrolysis and endothelial barrier permeability. Thus, catalytically inactive thrombin appears to modulate PAR1 function in vitro by stabilizing receptor cell-surface expression; but given the high clearance rate of thrombin, the high concentration of dabigatran required to achieve this effect the in vivo physiologic relevance is unknown.


Assuntos
Antitrombinas/farmacologia , Arrestinas/metabolismo , Benzimidazóis/farmacologia , Receptor PAR-1/metabolismo , Trombina/metabolismo , beta-Alanina/análogos & derivados , Dabigatrana , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , beta-Alanina/farmacologia , beta-Arrestinas
3.
J Biol Chem ; 285(24): 18781-93, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20368337

RESUMO

Protease-activated receptor-1 (PAR1) contains five N-linked glycosylation consensus sites as follows: three residing in the N terminus and two localized on the surface of the second extracellular loop (ECL2). To study the effect of N-linked glycosylation in the regulation of PAR1 signaling and trafficking, we generated mutants in which the critical asparagines of the consensus sites were mutated. Here, we report that both the PAR1 N terminus and ECL2 serve as sites for N-linked glycosylation but have different functions in the regulation of receptor signaling and trafficking. N-Linked glycosylation of the PAR1 N terminus is important for transport to the cell surface, whereas the PAR1 mutant lacking glycosylation at ECL2 (NA ECL2) trafficked to the cell surface like the wild-type receptor. However, activated PAR1 NA ECL2 mutant internalization was impaired compared with wild-type receptor, whereas constitutive internalization of unactivated receptor remained intact. Remarkably, thrombin-activated PAR1 NA ECL2 mutant displayed an enhanced maximal signaling response compared with wild-type receptor. The increased PAR1 NA ECL2 mutant signaling was not due to defects in the ability of thrombin to cleave the receptor or signal termination mechanisms. Rather, the PAR1 NA ECL2 mutant displayed a greater efficacy in thrombin-stimulated G protein signaling. Thus, N-linked glycosylation of the PAR1 extracellular surface likely influences ligand docking interactions and the stability of the active receptor conformation. Together, these studies strongly suggest that N-linked glycosylation of PAR1 at the N terminus versus the surface of ECL2 serves distinct functions critical for proper regulation of receptor trafficking and the fidelity of thrombin signaling.


Assuntos
Ligantes , Receptor PAR-1/metabolismo , Trombina/química , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Proteínas de Ligação ao GTP/química , Glicosilação , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais
4.
IUBMB Life ; 63(6): 403-11, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21438117

RESUMO

Protease-activated receptors (PARs) are a unique family of G-protein-coupled receptors (GPCRs) that are irreversibly activated following proteolytic cleavage of their extracellular N-terminus. PARs play critical functions in hemostasis, thrombosis, inflammation, embryonic development, and cancer progression. Because of the irreversible proteolytic nature of PAR activation, signaling by the receptors is tightly regulated. Three distinct processes including desensitization, internalization, and lysosomal degradation, regulate the temporal and spatial aspects of activated PAR signaling. Post-translational modifications play a critical role in regulating each of these processes and here we review the nature of PAR post-translational modifications and their importance in signal regulation. The PARs are activated by numerous proteases, and some can elicit distinct cellular responses, how this biased agonism is determined is unknown. Further study of the function of post-translational modifications of the PARs will lead to a greater understanding of the physiological regulation of baised agonism and how PAR signaling is precisely controlled in different cellular contexts.


Assuntos
Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Ativados por Proteinase/metabolismo , Transdução de Sinais/fisiologia , Modelos Biológicos , Isoformas de Proteínas/química , Receptores Ativados por Proteinase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA