Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Transl Med ; 21(1): 13, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627666

RESUMO

BACKGROUND: The pathogenicity of pneumococcus with high morbidity, mortality, and multi-drug resistance patterns has been increasing. The limited coverage of the licensed polysaccharide-based vaccines and the replacement of the non-vaccine serotypes are the main reasons for producing a successful serotype-independent vaccine. Pneumococcal surface protein A (PspA) is an extremely important virulence factor and an interesting candidate for conserved protein-based pneumococcal vaccine classified into two prominent families containing five clades. PspA family-elicited immunity is clade-dependent, and the level of the PspA cross-reactivity is restricted to the same family. METHODS: To cover and overcome the clade-dependent immunity of the PspAs in this study, we designed and tested a PspA1-5c+p vaccine candidate composed of the highest immunodominant coverage of B- and T-cell epitope truncated domain of each clade focusing on two cross-reactive B and C regions of the PspAs. The antigenicity, toxicity, physicochemical properties, 3D structure prediction, stability and flexibility of the designed protein using molecular dynamic (MD) simulation, molecular docking of the construct withHLADRB1*(01:01) and human lactoferrin N-lop, and immune simulation were assessed using immunoinformatics tools. In the experimental section, after intraperitoneal immunization of the mice with Alum adjuvanted recombinant PspA1-5c+p, we evaluated the immune response, cross-reactivity, and functionality of the Anti-PspA1-5c+p antibody using ELISA, Opsonophagocytic killing activity, and serum bactericidal assay. RESULTS: For the first time, this work suggested a novel PspA-based vaccine candidate using immunoinformatics tools. The designed PspA1-5c+p protein is predicted to be highly antigenic, non-toxic, soluble, stable with low flexibility in MD simulation, and able to stimulate both humoral and cellular immune responses. The designed protein also could interact strongly with HLADRB1*(01:01) and human lactoferrin N-lop in the docking study. Our immunoinformatics predictions were validated using experimental data. Results showed that the anti-PspA1-5c+p IgG not only had a high titer with strong and same cross-reactivity coverage against all pneumococcal serotypes used but also had high and effective bioactivity for pneumococcal clearance using complement system and phagocytic cells. CONCLUSION: Our findings elucidated the potential application of the PspA1-5c+p vaccine candidate as a serotype-independent pneumococcal vaccine with a strong cross-reactivity feature. Further in-vitro and in-vivo investigations against other PspA clades should be performed to confirm the full protection of the PspA1-5c+p vaccine candidate.


Assuntos
Infecções Pneumocócicas , Humanos , Animais , Camundongos , Sorogrupo , Infecções Pneumocócicas/prevenção & controle , Epitopos , Lactoferrina , Simulação de Acoplamento Molecular , Proteínas de Bactérias , Streptococcus pneumoniae , Vacinas Pneumocócicas , Anticorpos , Anticorpos Antibacterianos , Camundongos Endogâmicos BALB C
2.
Hum Genomics ; 16(1): 60, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403064

RESUMO

BACKGROUND: The interferon-induced transmembrane-protein 3 (IFITM3) is a vital component of the immune system's defense against viral infection. Variants in the IFITM3 gene have been linked to changes in expression and the risk of severe Coronavirus disease 2019 (COVID-19). This study aimed to investigate whether IFITM3 rs6598045, quantitative polymerase chain reaction (qPCR) cycle threshold (Ct) values, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are associated with an increased mortality rate of COVID-19. METHODS: The genotyping of IFITM3 rs6598045 polymorphism was analyzed using the amplification refractory mutation system-polymerase chain reaction in 1342 recovered and 1149 deceased patients positive for SARS-CoV-2. RESULTS: In this study, IFITM3 rs6598045 G allele as minor allele frequency was significantly more common in the deceased patients than in the recovered ones. Furthermore, the highest mortality rates were observed in Delta variant and lowest qPCR Ct values. COVID-19 mortality was associated with IFITM3 rs6598045 GG and AG in Delta variant and IFITM3 rs6598045 AG in Alpha variant. A statistically significant difference was observed in the qPCR Ct values between individuals with GG and AG genotypes and those with an AA genotype. CONCLUSION: A possible correlation was observed between the mortality rate of COVID-19, the G allele of IFITM3 rs6598045, and SARS-CoV-2 variants. However, large-scale research is still required to validate our results.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , Alelos , Genótipo , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética
3.
Proteins ; 90(3): 802-809, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34739152

RESUMO

Ecarin is one of the most widely used drug compounds in blood clotting experiments and is used to monitor and treat many diseases such as cancer, liver, lupus, and cardiovascular disease. The metalloproteinase domain is known as the active site of ecarin. In this study, an ecarin metalloproteinase cassette was designed and synthesized in the pUC57 vector. The gene fragment was released and cloned into the pET-28a vector and expressed in Escherichia coli. The recombinant protein was confirmed by western blotting. Enzyme activity was estimated by a laboratory coagulation test, and prothrombin time and tertiary structure were determined by using the Iterative Threading ASSEmbly Refinement (I-TASSER) server. Data from blood clotting tests for the produced ecarin activity were analyzed using an independent t test. As per I-TASSER server prediction, model 1 with the highest confidence score 0.95, template modeling score (0.84 ± 0.08), and root mean square deviation (3.5 ± 2.4 Å) was considered as the best model, and the 2e3xA enzyme was more similar to the target protein. The predictive results helped to better understand the relationship between the structure and function of the ecarin metalloproteinase domain. Also, the production of this active site in the prokaryotic expression system, which is simpler and more cost-effective than the production of the eukaryotic system, showed that this recombinant ecarin could be used as a substitute for the raw snake venom of Echis carinatus because it converts prothrombin into thrombin, and its activity, as estimated using the prothrombin time test, was found to be faster than normal ecarin.


Assuntos
Endopeptidases/química , Metaloproteases/química , Proteínas Recombinantes/química , Animais , Endopeptidases/farmacologia , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Metaloproteases/genética , Metaloproteases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trombina/química , Trombose/tratamento farmacológico , Viperidae
4.
Arch Microbiol ; 204(7): 417, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35737111

RESUMO

Probiotics are special bacterial strains with strain specific impacts. They can affect health condition in intestine by producing organic acid, competing with pathogens and maintaining cells homeostasis. Regarding to importance of cell junctions in cells transportation and the influence of pathogens in their functions which lead to inflammation, the impact of probiotic strains comprised of Lactobacillus and Bifidobacterium strains on two important members of gap junctions (Cx26 and Cx43) were assayed. The expressions of cell junction genes in contact with probiotic cocktail along with pathogenic components of enterotoxigenic Escherichia coli and Salmonella typhimurium on HT-29 cell line in different treatment orders were evaluated. Results analysis demonstrated downregulation of cx26 and cx43 along with pathogenic components while, probiotic cocktail could modulate their expression by upregulation. We concluded that Lactobacillus and Bifidobacterium strains were efficient probiotics, when they were used as one cocktail, impacted grater amount on the expression of cell junctions and this might lead to modulate homeostasis and reveal inflammation symptoms in intestine.


Assuntos
Bifidobacterium , Probióticos , Bifidobacterium/genética , Conexina 43 , Junções Comunicantes , Expressão Gênica , Humanos , Inflamação , Intestinos/microbiologia , Lactobacillus/genética , Probióticos/metabolismo
5.
Cell Mol Biol (Noisy-le-grand) ; 68(4): 158-169, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35988277

RESUMO

This study examined the effect of melatonin on oxidative stress, expression of pro-apoptotic protein, anti-apoptotic proteins, and the activity of the PI3K/Akt signaling pathway in the human ovarian cancer cell line (OVCAR3). OVCAR3 cells were treated with cisplatin, melatonin, cisplatin + melatonin, and siRNA Akt. Reactive oxygen species levels were assessed. The expression of the proteins was determined by Western blot. Melatonin administration significantly increased intracellular ROS generation, the cleavage of caspase 3 and decreased phosphorylation of Akt. Combination therapy of cisplatin and melatonin increases apoptosis in the OVCAR-3 cells by inhibiting of PI3K/Akt signaling pathway and exacerbating oxidative stress.


Assuntos
Melatonina , Neoplasias Ovarianas , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Humanos , Melatonina/farmacologia , Neoplasias Ovarianas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Immunogenet ; 49(5): 325-332, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029284

RESUMO

Host genetic factors may be correlated with the severity of coronavirus disease 2019 (COVID-19). Angiotensin-converting enzyme 2 (ACE2) plays a vital role in viral cell entrance. The current study aimed to evaluate the association of ACE2 rs2285666 polymorphism and clinical parameters with COVID-19 mortality. The ACE2 rs2285666 polymorphism was genotyped using the polymerase chain reaction-restriction fragment length polymorphism in 556 recovered and 522 dead patients. In this study, the frequency of ACE2 rs2285666 CC was significantly higher than TT genotype in dead patients. The multivariate logistic regression analysis results showed that the higher levels of alanine aminotransferase, alkaline phosphatase, creatinine, erythrocyte sedimentation rate, and C-reactive protein and the low levels of uric acid, cholesterol, low density lipoprotein, 25-hydroxyvitamin D, real-time PCR Ct values, and ACE2 rs2285666 CC genotype were associated with increased mortality rates after COVID-19. In conclusion, our findings demonstrated a possible link between COVID-19 mortality, clinical parameters, and ACE2 rs2285666 CC. Further research is required to confirm these results.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19 , COVID-19/genética , Humanos , Irã (Geográfico)/epidemiologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2
7.
Artigo em Inglês | MEDLINE | ID: mdl-35397157

RESUMO

Gut microbiota can interact with the immune system through direct or indirect pathways. In the indirect pathway, gut microbiota produces metabolites such as short chain fatty acids (SCFAs), which may modulate the immune response. SCFAs reduce inflammation, repair intestinal barrier, and induce propagation of specific immune cells, e.g., T regulatory cells (Treg), which can suppress reactive cells such as macrophage and dendritic cells (DCs). As one of the most dominant members of microbiota, Clostridium produces SCFAs. As one of SCFA members, butyrate plays an important role in the modulation of immune cells. Through butyrate production, Clostridium helps to generate aryl hydrocarbon receptor (AhR). AhR interacts with many proteins inside the cytoplasm including Heat Shock Protein 90 (HSP 90), HSP 23, and chaperone. Activation of AhR leads to its translocation inside the nucleus and gene expression, which yields cell differentiation, energy metabolism, microbial defense, and immune cell propagation. Moreover, it may interact with other cells like B-cell and epithelial cell, which are responsible for modulation and maturation, respectively. AhR causes upregulation in the co-stimulatory marker in the DCs and interacts with nuclear factor KB (NF-ĸB) to modulate cell function. Butyrate induces Treg (iTreg) propagation and upregulates the Forkhead box p3 (FOXP3) as a special marker of Treg cell. It may also yield signaling through G-protein coupled receptors (GPRs) which, in turn, facilitates polymorphonuclear (PMN) chemotaxis.The interaction between microbiota and non-immune cells, such as Paneth cells, leads to the secretion of antimicrobial substance, erection of barriers against bacterial pathogens, and regulation of microbiota composition via feedback effect. In addition, the components released from microbiota, such as peptidoglycan, reinforce the maturation of both the immune system and non-immune tissue development. Moreover, microbiota can directly activate the effector cells, e.g., macrophage, to secrete cytokines and propagate Treg cells.

8.
Exp Eye Res ; 202: 108346, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147471

RESUMO

Retinal degenerative diseases are considered a major challenge all over the world, and stem cell therapy is a promising approach to restore degenerative cells due to RD. MSCs are multipotent stem cells found in a variety of tissues. They are capable of differentiating into various retinal cell types, so it can be a good candidate for various degenerative disorders like retinal degenerations. ß-carotene is an antioxidant that could accelerate the stem cell differentiation while using the proper scaffold. In this study, we evaluated the effect of ß-carotene on the differentiation potential of ciliary epithelium-derived MSCs isolated from mouse eyes on alginate-based scaffolds. MSCs were isolated from mouse ciliary epithelium, cultured in DMEM medium supplemented with 10% FBS, and identified by detecting their surface antigens. Three 3D culture systems, alginate, alginate/gelatin, and gelatin hydrogels were prepared, and their structures were checked via SEM. MSCs were cultured on 3D and 2D culture system scaffolds following treated with differentiation medium containing 50 µM ß-mercaptoethanol, 1 × minimum essential medium-nonessential amino acids and 20% of knockout serum replacement and ß-carotene. MSCs viability and differentiation ability were examined by MTT and ICC, respectively. The expression changes of several retinal specific genes (Nestin, RPE65, and Rhodopsin) were also evaluated by qPCR. Over 80% of cells isolated from mouse ciliary epithelium were positive for MSC-specific markers. The viability rates of MSCs grown on all alginate-based scaffolds were above 70%. MSCs cultured on alginate-based scaffold in the differentiation medium containing ß-carotene expressed higher levels of rhodopsin protein compared to a 2D culture. Also, the expressions of Nestin, Rhodopsin, and RPE65 genes were upregulated in ß-carotene-treated MSCs grown on alginate-based scaffolds. Our results indicate that the addition of ß-carotene to the differentiation medium, along with applying alginate-based scaffolds, could induce higher differentiation in mouse ciliary epithelium-derived MSCs into specialized retinal cells.


Assuntos
Alginatos/farmacologia , Células-Tronco Mesenquimais/citologia , Retina/citologia , Alicerces Teciduais , beta Caroteno/farmacologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Retina/efeitos dos fármacos
9.
Curr Microbiol ; 77(8): 1673-1680, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32296918

RESUMO

Clostridioides difficile infection (CDI) is one of the most common causes of nosocomial diarrhea in developed countries and the main cause in healthcare settings. This case-control study was designed to evaluate the composition of the gut microbiota dominant bacterial groups in patients with CDI compared to the healthy control subjects. A total of 100 adult subjects involving 50 inpatients with CDI and 50 healthy persons were enrolled in the study. C. difficile isolates were characterized according to the anaerobic culture and presence of toxin genes with multiplex PCR. An ecological analysis was performed real-time quantitative PCR for bacterial elements. The abundances of Enterococcus spp., Lactobacillus spp., Escherichia coli, C. difficile, and Akkermansia muciniphila were higher in group CDI compared with group HC (P < 0.05). The abundances of Bacteroides spp., Bifidobacterium spp., and Faecalibacterium prausnitzii were lower in group CDI than in group HC (P < 0.05). No significant difference was observed in the copy number of Prevotella genus between the CDI and HC subjects (P-value = 0.087). We observed that economic status and income levels were reduced at patients with CDI, however, there was no significant difference between CDI and HC group results and other variables, such as age, BMI, and educational level. These findings showed a reduction in butyrate-producing bacteria and increase in lactic acid-producing bacteria was seen in CDI status. Overrepresentation of Akkermansia may be a predictive marker for the development of nosocomial diarrhea can result in a worse CDI prognosis.


Assuntos
Bactérias/classificação , Infecções por Clostridium/microbiologia , Microbioma Gastrointestinal , Hospitalização , Adolescente , Adulto , Butiratos/metabolismo , Estudos de Casos e Controles , Clostridioides difficile , Diarreia/microbiologia , Status Econômico , Fezes/microbiologia , Feminino , Humanos , Irã (Geográfico) , Ácido Láctico/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Adulto Jovem
10.
Sci Rep ; 14(1): 5845, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462658

RESUMO

Globally, breast cancer is the second most common cause of cancer-related deaths among women. In breast cancer, microRNAs (miRNAs) are essential for both the initiation and development of tumors. It has been suggested that the tumor suppressor microRNA-561-3p (miR-561-3p) is crucial in arresting the growth of cancer cells. Further research is necessary to fully understand the role and molecular mechanism of miR-561 in human BC. The aim of this study was to investigate the inhibitory effect of miR-561-3p on ZEB1, HIF1A, and MYC expression as oncogenes that have the most impact on PD-L1 overexpression and cellular processes such as proliferation, apoptosis, and cell cycle in breast cancer (BC) cell lines. The expression of ZEB1, HIF1A, and MYC genes and miR-561-3p were measured in BC clinical samples and cell lines via qRT-PCR. The luciferase assay, MTT, Annexin-PI staining, and cell cycle experiments were used to assess the effect of miR-561-3p on candidate gene expression, proliferation, apoptosis, and cell cycle progression. Flow cytometry was used to investigate the effects of miR-561 on PD-L1 suppression in the BC cell line. The luciferase assay showed that miRNA-561-3p targets the 3'-UTRs of ZEB1, HIF1A and MYC genes significantly. In BC tissues, the qRT-PCR results demonstrated that miR-561-3p expression was downregulated and the expression of ZEB1, HIF1A and MYC genes was up-regulated. It was shown that overexpression of miR-561-3p decreased PD-L1 expression and BC cell proliferation, and induced apoptosis and cell cycle arrest through downregulation of candidate oncogenes. Furthermore, inhibition of candidate genes by miR-561-3p reduced PD-L1 at both mRNA and protein levels. Our research investigated the impact of miR-561-3p on the expression of ZEB1, HIF1A and MYC in breast cancer cells for the first time. Our findings may help clarify the role of miR-561-3p in PD-L1 regulation and point to this miR as a potential biomarker and novel therapeutic target for cancer immunotherapy.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias da Mama/patologia , Genes myc , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/metabolismo , Luciferases/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
11.
Probiotics Antimicrob Proteins ; 16(2): 367-382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36884184

RESUMO

Probiotics play a crucial role in immunomodulation by regulating dendritic cell (DC) maturation and inducing tolerogenic DCs. Akkermansia muciniphila affects inflammatory response by elevating inhibitory cytokines. We aimed to evaluate whether Akkermansia muciniphila and its outer membrane vesicles (OMVs) affect microRNA-155, microRNA-146a, microRNA-34a, and let-7i expression of inflammatory and anti-inflammatory pathways. Peripheral blood mononuclear cells (PBMCs) were isolated from the healthy volunteers. To produce DCs, monocytes were cultivated with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). DCs were allocated into six subgroups: DC + Lipopolysaccharide (LPS), DC + dexamethasone, DC + A. muciniphila (MOI 100, 50), DC + OMVs (50 µg/ml), and DC + PBS. The surface expression of human leukocyte antigen-antigen D related (HLA-DR), CD86, CD80, CD83, CD11c, and CD14 was examined using flow cytometry, and the expression of microRNAs was assessed using qRT-PCR, and the levels of IL-12 and IL-10 were measured using ELISA. A. muciniphila (MOIs 50, 100) could significantly decrease IL-12 levels relative to the LPS group. The IL-10 levels were decreased in the DC + LPS group than the DC + dexamethasone group. Treatment with A. muciniphila (MOI 100) and OMVs could elevate the concentrations of IL-10. DC treatment with LPS led to a significant increment in the expression of microRNA-155, microRNA-34a, and microRNA-146a. The expression of these microRNAs was reversed by A. muciniphilia and its OMVs treatment. Let-7i increased in treatment groups compared to the DC + LPS group. A. muciniphilia (MOI 50) had a substantial effect on the expression of HLA-DR, CD80, and CD83 on DCs. Therefore, DCs treatment with A. muciniphila led to induce tolerogenic DCs and the production of anti-inflammatory IL-10.


Assuntos
Interleucina-10 , MicroRNAs , Humanos , Interleucina-10/genética , Leucócitos Mononucleares , Lipopolissacarídeos/farmacologia , Células Cultivadas , Interleucina-12/metabolismo , Interleucina-12/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Antígeno B7-1/análise , Antígeno B7-1/metabolismo , Antígeno B7-1/farmacologia , Monócitos , Antígenos HLA-DR/análise , Antígenos HLA-DR/metabolismo , Antígenos HLA-DR/farmacologia , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Dexametasona/metabolismo , Células Dendríticas , Akkermansia
12.
Res Pharm Sci ; 18(2): 159-176, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36873271

RESUMO

Background and purpose: Recently, the use of immunotoxins for targeted cancer therapy has been proposed, to find new anticancer drugs with high efficacy on tumor cells with minimal side effects on normal cells. we designed and compared several arazyme (AraA)-based fusion proteins with different ligands to choose the best-targeted therapy for interleukin 13 receptor alpha 2 (IL13Rα2)-overexpressed cancer cells. For this purpose, IL13Rα2 was selected as a receptor and IL13 and IL13.E13K were evaluated as native and mutant ligands, respectively. In addition, Pep-1 and A2b11 were chosen as the peptide ligands for targeted cancer therapy. Experimental approach: Several bioinformatics servers were used for designing constructs and optimization. The structures of the chimeric proteins were predicted and verified by I-TASSER, Q-Mean, ProSA, Ramachandran plot, and Verify3D program. Physicochemical properties, toxicity, and antigenicity were predicted by ProtParam, ToxinPred, and VaxiJen. HawkDock, LigPlot+, and GROMACS software were used for docking and molecular dynamics simulation of the ligand-receptor interaction. Findings/Results: The in silico results showed AraA-A2b11 has higher values of confidence score and Q-mean score was obtained for high-resolution crystal structures. All chimeric proteins were stable, non-toxic, and non-antigenic. AraA-(A(EAAAK)4ALEA(EAAAK)4A)2-IL13 retained its natural structure and based on ligand-receptor docking and molecular dynamic analysis, the binding ability of AraA-(A(EAAAK)4ALEA(EAAAK)4A)2-IL13 to IL13Rα2 was sufficiently strong. Conclusion and implications: Based on the bioinformatics result AraA-(A(EAAAK)4ALEA(EAAAK)4A)2-IL13 was a stable fusion protein with two separate domains and high affinity with the IL13Rα2 receptor. Therefore, AraA-(A(EAAAK)4ALEA(EAAAK)4A)2-IL13 fusion protein could be a new potent candidate for target cancer therapy.

13.
Mult Scler Relat Disord ; 70: 104471, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580874

RESUMO

BACKGROUND: The most common non-traumatic neurological disease in young- and middle-aged adults is multiple sclerosis (MS), leading to central nervous system (CNS) atrophy and neurological disorders with loss of myelin and axonal degeneration. Due to the inadequate efficiency of common treatments, some natural products with antioxidant properties such as Carvacrol have been considered. OBJECTIVE: the present study aimed to investigate carvacrol's anti-inflammatory and therapeutic effects on MS symptoms in healthy and experimental autoimmune encephalomyelitis (EAE) induced female Lewis rats. METHODS: The study was performed in three groups of Lewis rats: control group, EAE model, and EAE treated with carvacrol (carvacrol-treated group). The treatment group received 25 mg/kg of carvacrol intraperitoneally daily. Histologic examination and expression analysis of pro-inflammatory genes (Interleukin-1 and 17 (IL-1 and IL-17), Nuclear Factor Kappa B Cells (NF-κB) and Tumor Necrosis Factor-α (TNF-α)), myelin repair, and also regeneration genes (Myelin basic protein (MBP), Oligodendrocyte Transcription Factor 2 (OLIG2) and Platelet-Derived Growth Factor Receptor α (PDGFR-α)) were carried out. Gene studies, Hematoxylin and Eosin (H&E), and Luxol fast blue stain were performed in the lumbar region of the spinal cord. RESULTS: The EAE clinical scores in the carvacrol-treated group were lower than in untreated rats (P < 0.001). The expression of two genes, IL-17 and MBP, was confirmed using fluorescence immunohistochemistry (FIHC). A significant decrease was observed in NF-κB and IL-17, and IL-1 gene expression. The MBP and OLIG2 gene expression was increased in the carvacrol-treated group (p < 0.001). In EAE, PDGFR-α expression increased about four times. However, carvacrol administration did not affect PDGFR-α and TNF-α gene expression. In this treatment, H&E staining of spinal cord regions showed a significant decrease in inflammatory cell infiltration. Moreover, immunostaining analysis demonstrated a considerable increase in MBP and a reduction in IL-17 secretion. CONCLUSION: The results showed that carvacrol administration reduces the entry of inflammatory cells into the CNS by stimulating myelination-related processes employing increasing the expression of genes involved in myelin repair and reducing the expression of inflammatory genes. Our findings confirm that carvacrol improves the clinical and pathological symptoms of EAE through its therapeutic and modification properties as a potential adjunctive therapy and needs to be studied more.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Feminino , Ratos , Animais , Camundongos , Interleucina-17 , Esclerose Múltipla/patologia , Fator de Necrose Tumoral alfa , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Ratos Endogâmicos Lew , Encefalomielite Autoimune Experimental/tratamento farmacológico , Medula Espinal/patologia , Interleucina-1/metabolismo , Interleucina-1/farmacologia , Interleucina-1/uso terapêutico , Camundongos Endogâmicos C57BL
14.
Biomedicines ; 11(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37371769

RESUMO

Probiotic supplements consumed adequately at the proper time can affect health by modulating inflammatory pathways in gastrointestinal epithelial cells and modifying the resultant inflammatory response. The current study applied in vitro models to investigate the effectiveness of probiotics in modulating inflammatory pathways and altering inflammatory gene expression in gastrointestinal epithelial cells, with the ultimate goal of promoting probiotic consumption as a therapeutic and preventive measure for chronic inflammatory bowel conditions. HT-29 cells were treated with Gram-negative bacteria to evaluate the changes in pathways related to inflammation activities before and after treatment with a Lactobacillus spp. cocktail (L. plantarum, L. rhamnosus, L. brevis, and L. ruteri) and a Bifidobacterium spp. cocktail (B. bifidum, B. langum, and B. breve) using the real-time PCR method and ELISA for IL-1ß and IL-6 as pro-inflammatory cytokines. The results showed that the expression of NF-κB signaling pathway genes and IL-1ß and IL-6 cytokines increased after exposure to Gram-negative components. In contrast, all probiotic combinations significantly decreased the expression of genes and the secretion of cytokines. However, this decrease was significantly smaller in cells that underwent probiotic treatment after inflammation induction. In addition, cocktails containing combined Lactobacillus and Bifidobacterium demonstrated robust anti-inflammatory activity relative to solo cocktails. Our observations confirm that probiotic consumption could positively impact inflammatory conditions and alleviate inflammatory symptoms; they can be particularly effective as a preventive measure. Our study provides preliminary evidence to support the lifetime consumption of probiotics.

15.
J Cell Commun Signal ; 17(3): 939-955, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37040028

RESUMO

Autophagy, a critical catabolic process for cell survival against different types of stress, has a role in the differentiation of various cells, such as cardiomyocytes. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is an energy-sensing protein kinase involved in the regulation of autophagy. In addition to its direct role in regulating autophagy, AMPK can also influence other cellular processes by regulating mitochondrial function, posttranslational acetylation, cardiomyocyte metabolism, mitochondrial autophagy, endoplasmic reticulum stress, and apoptosis. As AMPK is involved in the control of various cellular processes, it can influence the health and survival of cardiomyocytes. This study investigated the effects of an AMPK inducer (Metformin) and an autophagy inhibitor (Hydroxychloroquine) on the differentiation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). The results showed that autophagy was upregulated during cardiac differentiation. Furthermore, AMPK activation increased the expression of CM-specific markers in hPSC-CMs. Additionally, autophagy inhibition impaired cardiomyocyte differentiation by targeting autophagosome-lysosome fusion. These results indicate the significance of autophagy in cardiomyocyte differentiation. In conclusion, AMPK might be a promising target for the regulation of cardiomyocyte generation by in vitro differentiation of pluripotent stem cells.

16.
Sci Rep ; 13(1): 1003, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653507

RESUMO

PD-L1 is one of the most important immune checkpoint molecules in breast cancer that plays an important role in suppressing the immune system when confronted with tumor cells and is regulated by various microRNAs. Among them, microRNA-335-3p and microRNA-145-5p, regulated by DNA methylation, have tumor suppressor activities. We studied the role of miR-335 and -145 on PD-L1 suppression in breast cancer. The expression of miR-355 and miR-145 was significantly downregulated in BC tissues and cell lines compared to their controls, and their downregulation was negatively correlated with PD-L1 overexpression. In-silico and luciferase reporter systems confirmed that miR-335 and -145 target PD-L1. In BC tissues and cell lines, cancer-specific methylation was found in CpG-rich areas upstream of miR-335 and-145, and up-regulation of PD-L1 expression was connected with hypermethylation (r = 0.4089, P = 0.0147, and r = 0.3373, P = 0.0475, respectively). The higher levels of miR-355 and -145 in BC cells induced apoptosis, arrested the cell cycle, and reduced proliferation significantly. In summary, we found that miR-335 and -145 are novel tumor suppressors inactivated in BC, and these miRs may serve as potential therapeutic targets for breast cancer treatment.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/patologia , Metilação de DNA , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Genes Supressores de Tumor , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
17.
Iran J Microbiol ; 15(1): 128-137, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37069912

RESUMO

Background and Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein that projects from the virus surface is highly immunogenic. It is considered to be the target of many neutralizing antibodies as well as a target in vaccine design efforts. Evaluation the immunogenicity of a recombinant fragment of the spike protein (rfsp) that is comprised of Receptor Binding Domain (RBD), S1/S2 cleavage site, and fusion peptide (FP) as immunogenic proteins of SARS-COV-2, in BALB/c mice and evaluation of the efficacy of epitopes rfsp as a multi-subunit chimeric vaccine. Materials and Methods: The present study made use of CHO-K1 (Chinese hamster ovary K1) cells to create a cell line for constant expression rfsp. The rfsp was purified with Ni-NTA chromatography and confirmed by Western blotting. The immunogenicity and neutralizing antibody efficacy of rfsp were evaluated in BALB/c mice. ELISA was employed to test rfsp via sera of COVID-19 convalescent patients infected with SARS-CoV-2 alpha and delta variants. Results: Our results showed significant differences in antibody titers in immunized mice compared to the control groups and neutralizing antibodies were positive, sera from mice immunized are capable of bound SARS-CoV-2 virus, chimer peptide is capable bound antibodies patients infected with SARS-CoV-2 and patients infected with delta variant SARS-CoV-2. Conclusion: Overall, these results indicate that rfsp protein would be a novel potential antigen candidate for the development of a subunit SARS CoV-2 vaccine and rfsp has the potential to be a useful option for the development of the assays for serodiagnosis of SARS-CoV-2 infection.

18.
Iran J Pharm Res ; 22(1): e137751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116554

RESUMO

Since December 2019, the world has been grappling with an ongoing global COVID-19 pandemic. Various virus variants have emerged over the past two years, each posing a greater threat than its predecessors. The recent appearance of the omicron variant (B.1.1.529) has raised significant alarm within the field of epidemiology due to its highly contagious nature and rapid transmission rate. The omicron variant possessed mutations in the key receptor-binding domain (RBD) region, the S region, and these modifications have shown a notable impact on the strain's susceptibility to neutralizing antibodies. Developing safe and efficient vaccines to prevent a future severe acute respiratory outbreak of coronavirus syndrome 2 (SARS-CoV-2) is significant. Viral surface spike proteins are ideal targets for vaccines. This study aimed to find a multi-subunit chimeric vaccine. After conducting bioinformatics analysis, the recombinant spike (RS) protein of SARS-CoV-2 was deliberately designed and subsequently produced using E. coli expression systems. The immunogenicity of RS and neutralizing antibody responses were evaluated on immunized BALB/c mice. There was a significant difference in antibody titers between RS-immunized mice and control groups. The endpoint of the serum antibody titer of mice immunized with our chimeric protein was 2.5 times higher than that of the negative control. The chimeric construct could present multiple antigens simultaneously, influentially affecting immunization. Sera from mice vaccinated by RS could recognize the SARS-CoV-2 virus and neutralize antibodies. Our chimeric peptide could bind to antibodies in the serum of patients infected with different serotypes of the SARS-CoV-2 virus, such as alpha, delta, and omicron variants. The results indicated that the RS protein would be a potential novel antigenic candidate for subunit vaccine development and could be used as a useful alternative to generate diagnostic serological tests for SARS-CoV-2 infection.

19.
J Immunol Res ; 2023: 2345062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323564

RESUMO

Recent research has associated the interferon-induced transmembrane protein 3 gene (IFITM3) with the outcomes of coronavirus disease 2019 (COVID-19), although the findings are contradictory. This study aimed to determine the relationship between IFITM3 gene rs34481144 polymorphism and clinical parameters with COVID-19 mortality. The tetra-primer amplification refractory mutation system-polymerase chain reaction assay was used to analyze IFITM3 rs34481144 polymorphism in 1,149 deceased and 1,342 recovered patients. The clinical parameters were extracted from the patients' medical records. In this study, the frequency of IFITM3 rs34481144 CT genotypes (OR 1.47, 95% CI 1.23-1.76, P < 0.0001) in both sexes was significantly higher in deceased patients than in recovered patients. Moreover, IFITM3 rs34481144 TT genotypes (OR 3.38, 95% CI 1.05-10.87, P < 0.0001) in women were significantly associated with COVID-19 mortality. The multivariable logistic regression model results indicated that mean age (P < 0.001), alkaline phosphatase (P = 0.005), alanine aminotransferase (P < 0.001), low-density lipoprotein (P < 0.001), high-density lipoprotein (P < 0.001), fasting blood glucose (P = 0.010), creatinine (P < 0.001), uric acid (P < 0.001), C-reactive protein (P = 0.004), 25-hydroxyvitamin D (P < 0.001), erythrocyte sedimentation rate (P < 0.001), and real-time PCR Ct values (P < 0.001) were linked with increased COVID-19 death rates. In conclusion, IFITM3 rs34481144 gene polymorphism was linked to the mortality of COVID-19, with the rs34481144-T allele being especially important for mortality. Further studies are needed to confirm the results of this study.


Assuntos
COVID-19 , Predisposição Genética para Doença , Masculino , Humanos , Feminino , Polimorfismo de Nucleotídeo Único , Proteínas de Membrana/genética , COVID-19/genética , Genótipo , Interferons/genética , Proteínas de Ligação a RNA/genética
20.
Int J Fertil Steril ; 16(2): 115-121, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35639649

RESUMO

Background: Today, vitamin D deficiency (VDD) is one of the major health issues around the world and VDD is associated with several diseases. This study was conducted to find the relationship between vitamin D status in male's serum with sperm function and clinical outcomes in infertile men candidate for intracytoplasmic sperm injection (ICSI). Materials and Methods: In this cohort study, different parameters of male fertility such as sperm parameters, oxidative stress, and sperm chromatin status were evaluated in sperm samples of 30 infertile couples candidate for ICSI. Clinical outcomes like fertilization, embryo quality, and implantation were also assessed. Data were analyzed using SPSS Statistics 25.0 software. Besides, assessment of the correlation between aforementioned parameters with the level of serum vitamin D, in this study, ICSI candidates were divided into three groups [individuals with sufficient vitamin D levels (>30 ng/ml), insufficient vitamin D levels (between 20-29 ng/ml), and VDD (<20 ng/ml)]. The aforementioned parametesr were also compared between these study groups. Results: Analysis of all the data revealed a significant correlation between the level of vitamin D with sperm concentration (P=0.000, r=0.5), sperm count (P=0.03, r=0.31) and sperm reactive oxygen species (ROS) level (P=0.000, r=-0.77). Moreover, comparing clinical outcomes within study groups showed a significant difference in implantation rate between sufficient and other groups (insufficient and deficient) (P=0.02). Conclusion: Considering the association between sperm concentration and level of ROS with vitamin D and, higher implantation rate in individuals with vitamin D sufficient group compared to other two groups, our data call for vitamin D supplementation as part of male infertility treatment. But considering our sample size, further research is needed to verify these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA