Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Pathog ; 16(10): e1008985, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045027

RESUMO

The arthropod melanization immune response is activated by extracellular protease cascades predominantly comprised of CLIP-domain serine proteases (CLIP-SPs) and serine protease homologs (CLIP-SPHs). In the malaria vector, Anopheles gambiae, the CLIP-SPHs SPCLIP1, CLIPA8, and CLIPA28 form the core of a hierarchical cascade downstream of mosquito complement that is required for microbial melanization. However, our understanding of the regulatory relationship of the CLIP-SPH cascade with the catalytic CLIP-SPs driving melanization is incomplete. Here, we report on the development of a novel screen to identify melanization pathway components based on the quantitation of melanotic mosquito excreta, eliminating the need for microdissections or hemolymph enzymatic assays. Using this screen, we identified CLIPC9 and subsequent functional analyses established that this protease is essential for the melanization of both Escherichia coli and the rodent malaria parasite Plasmodium berghei. Mechanistically, septic infection with E. coli promotes CLIPC9 cleavage and both full-length and cleaved CLIPC9 localize to this bacterium in a CLIPA8-dependent manner. The steady state level of CLIPC9 in the hemolymph is regulated by thioester-containing protein 1 (TEP1), suggesting it functions downstream of mosquito complement. In support, CLIPC9 cleavage is inhibited following SPCLIP1, CLIPA8, and CLIPA28 knockdown positioning it downstream of the CLIP-SPH cascade. Moreover, like CLIPA8 and CLIPA28, CLIPC9 processing is negatively regulated by serine protease inhibitor 2 (SRPN2). This report demonstrates how our novel excretion-based approach can be utilized to dissect the complex protease networks regulating mosquito melanization. Collectively, our findings establish that CLIPC9 is required for microbial melanization in An. gambiae and shed light on how the CLIP-SPH cascade regulates this potent immune response.


Assuntos
Anopheles/parasitologia , Proteínas de Insetos/metabolismo , Malária/parasitologia , Melaninas/metabolismo , Mosquitos Vetores/parasitologia , Serina Proteases/metabolismo , Serina/metabolismo , Animais , Anopheles/imunologia , Proteínas de Insetos/genética , Malária/imunologia , Malária/metabolismo , Malária/patologia , Camundongos , Plasmodium berghei/imunologia , Plasmodium berghei/isolamento & purificação
2.
Proc Natl Acad Sci U S A ; 114(19): E3839-E3848, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28446616

RESUMO

Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wlds allele, which protects from axon dysfunction. We demonstrate that DBA/2J.Wlds mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J.Wlds mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J.Wlds mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma.


Assuntos
Complemento C3/imunologia , Glaucoma/imunologia , Células Ganglionares da Retina/imunologia , Regulação para Cima/imunologia , Animais , Complemento C3/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/imunologia , Glaucoma/genética , Glaucoma/patologia , Glaucoma/prevenção & controle , Pressão Intraocular/imunologia , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Nervo Óptico/imunologia , Nervo Óptico/patologia , Quinazolinas/farmacologia , Células Ganglionares da Retina/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Tirfostinas/farmacologia
3.
J Neurosci ; 36(12): 3531-40, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27013681

RESUMO

Astrocytes are well established modulators of extracellular glutamate, but their direct influence on energy balance-relevant behaviors is largely understudied. As the anorectic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists are partly mediated by central modulation of glutamatergic signaling, we tested the hypothesis that astrocytic GLP-1R signaling regulates energy balance in rats. Central or peripheral administration of a fluorophore-labeled GLP-1R agonist, exendin-4, localizes within astrocytes and neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus critical for energy balance control. This effect is mediated by GLP-1R, as the uptake of systemically administered fluorophore-tagged exendin-4 was blocked by central pretreatment with the competitive GLP-1R antagonist exendin-(9-39). Ex vivo analyses show prolonged exendin-4-induced activation (live cell calcium signaling) of NTS astrocytes and neurons; these effects are also attenuated by exendin-(9-39), indicating mediation by the GLP-1R. In vitro analyses show that the application of GLP-1R agonists increases cAMP levels in astrocytes. Immunohistochemical analyses reveal that endogenous GLP-1 axons form close synaptic apposition with NTS astrocytes. Finally, pharmacological inhibition of NTS astrocytes attenuates the anorectic and body weight-suppressive effects of intra-NTS GLP-1R activation. Collectively, data demonstrate a role for NTS astrocytic GLP-1R signaling in energy balance control. SIGNIFICANCE STATEMENT: Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce food intake and are approved by the Food and Drug Administration for the treatment of obesity, but the cellular mechanisms underlying the anorectic effects of GLP-1 require further investigation. Astrocytes represent a major cellular population in the CNS that regulates neurotransmission, yet the role of astrocytes in mediating energy balance is largely unstudied. The current data provide novel evidence that astrocytes within the NTS are relevant for energy balance control by GLP-1 signaling. Here, we report that GLP-1R agonists activate and internalize within NTS astrocytes, while behavioral data suggest the pharmacological relevance of NTS astrocytic GLP-1R activation for food intake and body weight. These findings support a previously unknown role for CNS astrocytes in energy balance control by GLP-1 signaling.


Assuntos
Regulação do Apetite/fisiologia , Astrócitos/fisiologia , Comportamento Alimentar/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Homeostase/fisiologia , Bulbo/metabolismo , Animais , Metabolismo Energético/fisiologia , Retroalimentação Fisiológica/fisiologia , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley
4.
Neurobiol Dis ; 71: 44-52, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25132557

RESUMO

The endothelin system is implicated in various human and animal glaucomas. Targeting the endothelin system has great promise as a treatment for human glaucoma, but the cell types involved and the exact mechanisms of action are not clearly elucidated. Here, we report a detailed characterization of the endothelin system in specific cell types of the optic nerve head (ONH) during glaucoma in DBA/2J mice. First, we show that key components of the endothelin system are expressed in multiple cell types. We discover that endothelin 2 (EDN2) is expressed in astrocytes as well as microglia/monocytes in the ONH. The endothelin receptor type A (Ednra) is expressed in vascular endothelial cells, while the endothelin receptor type B (Ednrb) receptor is expressed in ONH astrocytes. Second, we show that Macitentan treatment protects from glaucoma. Macitentan is a novel, orally administered, dual endothelin receptor antagonist with greater affinity, efficacy and safety than previous antagonists. Finally, we test the combinatorial effect of targeting both the endothelin and complement systems as a treatment for glaucoma. Similar to endothelin, the complement system is implicated in a variety of human and animal glaucomas, and has great promise as a treatment target. We discovered that combined targeting of the endothelin (Bosentan) and complement (C1qa mutation) systems is profoundly protective. Remarkably, 80% of DBA/2J eyes subjected to this combined inhibition developed no detectable glaucoma. This opens an exciting new avenue for neuroprotection in glaucoma.


Assuntos
Complemento C1q/metabolismo , Endotelina-2/metabolismo , Glaucoma/complicações , Degeneração Neural/etiologia , Degeneração Neural/terapia , Receptor de Endotelina A/metabolismo , Animais , Astrócitos/metabolismo , Bosentana , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Antagonistas do Receptor de Endotelina A/uso terapêutico , Glaucoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos DBA , Degeneração Neural/patologia , Pirimidinas/uso terapêutico , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Sulfonamidas/metabolismo , Sulfonamidas/uso terapêutico
5.
Gen Comp Endocrinol ; 161(3): 320-34, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19523386

RESUMO

Carcinus maenas, commonly known as the European green crab, is one of the best-known and most successful marine invasive species. While a variety of natural and anthropogenic mechanisms are responsible for the geographic spread of this crab, its ability to adapt physiologically to a broad range of salinities, temperatures and other environmental factors has enabled its successful establishment in new habitats. To extend our understanding of hormonal control in C. maenas, including factors that allow for its extreme adaptability, we have undertaken a mass spectral/functional genomics investigation of the neuropeptides used by this organism. Via a strategy combining MALDI-based high resolution mass profiling, biochemical derivatization, and nanoscale separation coupled to tandem mass spectrometric sequencing, 122 peptide paracrines/hormones were identified from the C. maenas central nervous system and neuroendocrine organs. These peptides include 31 previously described Carcinus neuropeptides (e.g. NSELINSILGLPKVMNDAamide [beta-pigment dispersing hormone] and PFCNAFTGCamide [crustacean cardioactive peptide]), 49 peptides only described in species other than the green crab (e.g. pQTFQYSRGWTNamide [Arg(7)-corazonin]), and 42 new peptides de novo sequenced here for the first time (e.g. the pyrokinins TSFAFSPRLamide and DTGFAFSPRLamide). Of particular note are large collections of FMRFamide-like peptides (25, including nine new isoforms sequenced de novo) and A-type allatostatin peptides (25, including 10 new sequences reported here for the first time) in this study. Also of interest is the identification of two SIFamide isoforms, GYRKPPFNGSIFamide and VYRKPPFNGSIFamide, the latter peptide known previously only from members of the astacidean genus Homarus. Using transcriptome analyses, 15 additional peptides were characterized, including an isoform of bursicon beta and a neuroparsin-like peptide. Collectively, the data presented in this study not only greatly expand the number of identified C. maenas neuropeptides, but also provide a framework for future investigations of the physiological roles played by these molecules in this highly adaptable species.


Assuntos
Braquiúros/genética , Braquiúros/metabolismo , Neuropeptídeos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Feminino , Genômica/métodos , Técnicas In Vitro , Masculino , Espectrometria de Massas/métodos , Neuropeptídeos/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
6.
PLoS One ; 14(4): e0214753, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30958840

RESUMO

The complement-like pathway of the African malaria mosquito Anopheles gambiae provides protection against infection by diverse pathogens. A functional requirement for a core set of proteins during infections by rodent and human malaria parasites, bacteria, and fungi suggests a similar mechanism operates against different pathogens. However, the extent to which the molecular mechanisms are conserved is unknown. In this study we probed the biochemical responses of complement-like pathway to challenge by the Gram-positive bacterium Staphyloccocus aureus. Western blot analysis of the hemolymph revealed that S. aureus challenge activates a TEP1 convertase-like activity and promotes the depletion of the protein SPCLIP1. S. aureus challenge did not lead to an apparent change in the abundance of the LRIM1/APL1C complex compared to challenge by the Gram-negative bacterium, Escherichia coli. Following up on this observation using a panel of LRIM1 and APL1C antibodies, we found that E. coli challenge, but not S. aureus, specifically activates a protease that cleaves the C-terminus of APL1C. Inhibitor studies in vivo and in vitro protease assays suggest that a serine protease is responsible for APL1C cleavage. This study reveals that despite different challenges converging on activation of a TEP1 convertase-like activity, the mosquito complement-like pathway also includes pathogen-specific reactions.


Assuntos
Anopheles/metabolismo , Proteínas de Insetos/metabolismo , Animais , Anticorpos/análise , Anticorpos/imunologia , Proteínas do Sistema Complemento/metabolismo , Dimerização , Escherichia coli/patogenicidade , Hemolinfa/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Inibidores de Proteases/farmacologia , Proteólise/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Serina Proteases/metabolismo , Staphylococcus aureus/patogenicidade , Especificidade por Substrato
7.
Sci Rep ; 9(1): 15191, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645596

RESUMO

Malaria, the world's most devastating parasitic disease, is transmitted between humans by mosquitoes of the Anopheles genus. An. gambiae is the principal malaria vector in Sub-Saharan Africa. The C-type lectins CTL4 and CTLMA2 cooperatively influence Plasmodium infection in the malaria vector Anopheles. Here we report the purification and biochemical characterization of CTL4 and CTLMA2 from An. gambiae and An. albimanus. CTL4 and CTLMA2 are known to form a disulfide-bridged heterodimer via an N-terminal tri-cysteine CXCXC motif. We demonstrate in vitro that CTL4 and CTLMA2 intermolecular disulfide formation is promiscuous within this motif. Furthermore, CTL4 and CTLMA2 form higher oligomeric states at physiological pH. Both lectins bind specific sugars, including glycosaminoglycan motifs with ß1-3/ß1-4 linkages between glucose, galactose and their respective hexosamines. Small-angle x-ray scattering data supports a compact heterodimer between the CTL domains. Recombinant CTL4/CTLMA2 is found to function in vivo, reversing the enhancement of phenol oxidase activity in dsCTL4-treated mosquitoes. We propose these molecular features underline a common function for CTL4/CTLMA2 in mosquitoes, with species and strain-specific variation in degrees of activity in response to Plasmodium infection.


Assuntos
Anopheles/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Sequência Conservada , Escherichia coli/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Proteínas Recombinantes/metabolismo , Soluções
8.
Mol Neurodegener ; 14(1): 6, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670050

RESUMO

BACKGROUND: Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. Recent work in animal models suggests that a critical neuroinflammatory event damages retinal ganglion cell axons in the optic nerve head during ocular hypertensive injury. We previously demonstrated that monocyte-like cells enter the optic nerve head in an ocular hypertensive mouse model of glaucoma (DBA/2 J), but their roles, if any, in mediating axon damage remain unclear. METHODS: To understand the function of these infiltrating monocyte-like cells, we used RNA-sequencing to profile their transcriptomes. Based on their pro-inflammatory molecular signatures, we hypothesized and confirmed that monocyte-platelet interactions occur in glaucomatous tissue. Furthermore, to test monocyte function we used two approaches to inhibit their entry into the optic nerve head: (1) treatment with DS-SILY, a peptidoglycan that acts as a barrier to platelet adhesion to the vessel wall and to monocytes, and (2) genetic targeting of Itgam (CD11b, an immune cell receptor that enables immune cell extravasation). RESULTS: Monocyte specific RNA-sequencing identified novel neuroinflammatory pathways early in glaucoma pathogenesis. Targeting these processes pharmacologically (DS-SILY) or genetically (Itgam / CD11b knockout) reduced monocyte entry and provided neuroprotection in DBA/2 J eyes. CONCLUSIONS: These data demonstrate a key role of monocyte-like cell extravasation in glaucoma and demonstrate that modulating neuroinflammatory processes can significantly lessen optic nerve injury.


Assuntos
Glaucoma/patologia , Monócitos/patologia , Degeneração Neural/patologia , Animais , Quimiotaxia de Leucócito , Camundongos , Nervo Óptico/patologia
9.
J Exp Med ; 212(3): 287-95, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25732305

RESUMO

Variants in triggering receptor expressed on myeloid cells 2 (TREM2) confer high risk for Alzheimer's disease (AD) and other neurodegenerative diseases. However, the cell types and mechanisms underlying TREM2's involvement in neurodegeneration remain to be established. Here, we report that TREM2 is up-regulated on myeloid cells surrounding amyloid deposits in AD mouse models and human AD tissue. TREM2 was detected on CD45(hi)Ly6C(+) myeloid cells, but not on P2RY12(+) parenchymal microglia. In AD mice deficient for TREM2, the CD45(hi)Ly6C(+) macrophages are virtually eliminated, resulting in reduced inflammation and ameliorated amyloid and tau pathologies. These data suggest a functionally important role for TREM2(+) macrophages in AD pathogenesis and an unexpected, detrimental role of TREM2 in AD pathology. These findings have direct implications for future development of TREM2-targeted therapeutics.


Assuntos
Doença de Alzheimer/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Fatores Etários , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Antígenos Comuns de Leucócito/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Camundongos Transgênicos , Receptores Imunológicos/genética , Regulação para Cima , Proteínas tau/metabolismo
10.
PLoS One ; 8(8): e72282, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977271

RESUMO

Glaucoma is a complex disease affecting an estimated 70 million people worldwide, characterised by the progressive degeneration of retinal ganglion cells and accompanying visual field loss. The common site of damage to retinal ganglion cells is thought to be at the optic nerve head, however evidence from other optic neuropathies and neurodegenerative disorders suggests that dendritic structures undergo a prolonged period of atrophy that may accompany or even precede soma loss and neuronal cell death. Using the DBA/2J mouse model of glaucoma this investigation aims to elucidate the impact of increasing intraocular pressure on retinal ganglion cell dendrites using DBA/2J mice that express YFP throughout the retinal ganglion cells driven by Thy1 (DBA/2J.Thy1(YFP)) and DiOlistically labelled retinal ganglion cells in DBA/2J mice. Here we show retinal ganglion cell dendritic degeneration in DiOlistically labelled DBA/2J retinal ganglion cells but not in the DBA/2J.Thy1(YFP) retinal ganglion cells suggesting that a potential downregulation of Thy1 allows only 'healthy' retinal ganglion cells to express YFP. These data may highlight alternative pathways to retinal ganglion cell loss in DBA/2J glaucoma.


Assuntos
Dendritos/metabolismo , Glaucoma/genética , Doenças do Nervo Óptico/genética , Células Ganglionares da Retina/metabolismo , Animais , Atrofia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Glaucoma/metabolismo , Glaucoma/patologia , Pressão Intraocular , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Doenças do Nervo Óptico/metabolismo , Doenças do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo
11.
J Clin Invest ; 122(4): 1246-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22426214

RESUMO

Glaucoma is a common ocular disorder that is a leading cause of blindness worldwide. It is characterized by the dysfunction and loss of retinal ganglion cells (RGCs). Although many studies have implicated various molecules in glaucoma, no mechanism has been shown to be responsible for the earliest detectable damage to RGCs and their axons in the optic nerve. Here, we show that the leukocyte transendothelial migration pathway is activated in the optic nerve head at the earliest stages of disease in an inherited mouse model of glaucoma. This resulted in proinflammatory monocytes entering the optic nerve prior to detectable neuronal damage. A 1-time x-ray treatment prevented monocyte entry and subsequent glaucomatous damage. A single x-ray treatment of an individual eye in young mice provided that eye with long-term protection from glaucoma but had no effect on the contralateral eye. Localized radiation treatment prevented detectable neuronal damage and dysfunction in treated eyes, despite the continued presence of other glaucomatous stresses and signaling pathways. Injection of endothelin-2, a damaging mediator produced by the monocytes, into irradiated eyes, combined with the other glaucomatous stresses, restored neural damage with a topography characteristic of glaucoma. Together, these data support a model of glaucomatous damage involving monocyte entry into the optic nerve.


Assuntos
Modelos Animais de Doenças , Glaucoma/prevenção & controle , Monócitos/fisiologia , Disco Óptico/patologia , Células Ganglionares da Retina/efeitos da radiação , Migração Transendotelial e Transepitelial/efeitos da radiação , Animais , Axônios/ultraestrutura , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/fisiologia , Irradiação Craniana , Endotelina-2/farmacologia , Endotelina-2/fisiologia , Endotelina-2/toxicidade , Raios gama , Regulação da Expressão Gênica , Glaucoma/genética , Glaucoma/imunologia , Glaucoma/patologia , Pressão Intraocular/efeitos da radiação , Selectina L/fisiologia , Camundongos , Camundongos Endogâmicos DBA , Neuritos/ultraestrutura , Disco Óptico/efeitos da radiação , Quimera por Radiação , Dosagem Radioterapêutica , Células Ganglionares da Retina/patologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Migração Transendotelial e Transepitelial/genética , Regulação para Cima/efeitos da radiação , Irradiação Corporal Total , Raios X
12.
J Clin Invest ; 121(4): 1429-44, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21383504

RESUMO

Glaucoma is one of the most common neurodegenerative diseases. Despite this, the earliest stages of this complex disease are still unclear. This study was specifically designed to identify early stages of glaucoma in DBA/2J mice. To do this, we used genome-wide expression profiling of optic nerve head and retina and a series of computational methods. Eyes with no detectable glaucoma by conventional assays were grouped into molecularly defined stages of disease using unbiased hierarchical clustering. These stages represent a temporally ordered sequence of glaucoma states. We then determined networks and biological processes that were altered at these early stages. Early-stage expression changes included upregulation of both the complement cascade and the endothelin system, and so we tested the therapeutic value of separately inhibiting them. Mice with a mutation in complement component 1a (C1qa) were protected from glaucoma. Similarly, inhibition of the endothelin system with bosentan, an endothelin receptor antagonist, was strongly protective against glaucomatous damage. Since endothelin 2 is potently vasoconstrictive and was produced by microglia/macrophages, our data provide what we believe to be a novel link between these cell types and vascular dysfunction in glaucoma. Targeting early molecular events, such as complement and endothelin induction, may provide effective new treatments for human glaucoma.


Assuntos
Complemento C1q/genética , Complemento C1q/fisiologia , Endotelina-2/genética , Endotelina-2/fisiologia , Glaucoma/etiologia , Animais , Bosentana , Análise por Conglomerados , Complemento C1q/deficiência , Modelos Animais de Doenças , Antagonistas dos Receptores de Endotelina , Feminino , Perfilação da Expressão Gênica , Glaucoma/genética , Glaucoma/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos DBA , Camundongos Mutantes , Nervo Óptico/fisiopatologia , Retina/fisiopatologia , Transdução de Sinais , Sulfonamidas/farmacologia , Regulação para Cima
13.
Gen Comp Endocrinol ; 156(3): 454-9, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18413275

RESUMO

Peptides represent the largest class of signaling molecules used by nervous systems, functioning as locally-released paracrines and circulating hormones in both invertebrates and vertebrates. While many studies have focused on elucidating peptidergic systems in higher crustaceans, little is known about neuropeptides in the more primitive crustacean taxa. Here, we have begun an investigation of the peptides present in the central nervous system (CNS) of the copepod crustacean Calanus finmarchicus, presenting immunohistochemical data on the presence and distribution of pigment dispersing hormone (PDH) and tachykinin-related peptide (TRP). In this species, strong PDH-like immunoreactivity was restricted to one pair of somata in the protocerebrum (PC) and the axonal projections emanating from them. TRP-like immunopositive structures were present in the PC, deutocerebrum (DC), tritocerebrum (TC), and ventral nerve cord (VNC). In the PC, a single soma in the left hemisphere was labeled. This neuron appears to be the source of a centrally located, bilaterally symmetric plexus present within the PC. In the DC, two pairs of intensely immunopositive somata were labeled, each projecting axons toward the posterior and producing an extensive collection of putative release terminals that spans the DC, TC, and anterior portion of the VNC. Several other more weakly labeled somata were also present in the DC. Double-labeling studies indicated that no co-localization of PDH- and TRP-like peptides is present in the C. finmarchicus CNS. As preadsorption controls completely abolished each label, we feel these data represent accurate distributions of PDH- and TRP-like peptides within the C. finmarchicus CNS, thus providing a framework for future studies of the functional roles members of these peptide families play in this copepod species.


Assuntos
Sistema Nervoso Central/metabolismo , Copépodes/fisiologia , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Taquicininas/metabolismo , Animais , Química Encefálica/fisiologia , Imunofluorescência , Imuno-Histoquímica , Neurônios/metabolismo , Distribuição Tecidual
14.
Gen Comp Endocrinol ; 155(3): 526-33, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17950732

RESUMO

The copepod crustacean Calanus finmarchicus plays a critical role in the ecology of the Gulf of Maine and other regions of the North Atlantic. To increase our understanding of the physiology of this species, a normalized, whole organism cDNA library was constructed, and expressed sequence tags (ESTs) of the clones were generated. Among these ESTs was one with homology to known cDNAs encoding prepro-A-type allatostatins (A-type ASTs), a well-known family of arthropod peptides that regulate juvenile hormone production in insects. Sequence analysis of the clone from which the EST was generated, with subsequent translation of its open reading frame, showed it to encode five novel A-type ASTs, whose mature structures were predicted to be APYGFGIamide, pE/EPYGFGIamide, ALYGFGIamide, pE/EPYNFGIamide, and pQ/QPYNFGVamide. Each of the peptides is present as a single copy within the prepro-hormone with the exception of APYGFGIamide, which is present in three copies. Surprisingly, the organization of the Calanus prepro-A-type AST, specifically the number of encoded A-type peptides, is more similar to those of insects than it is to the known decapod crustacean prepro-hormones. Moreover, the Calanus A-type ASTs possess isoleucine or valine residues at their carboxy (C)-termini rather than leucine, which is present in most other family members. Wholemount immunohistochemistry suggests that six pairs of somata produce the native Calanus A-type ASTs: five in the protocerebrum and one in the suboesophageal region. To the best of our knowledge, our report is the first characterization of a neuropeptidergic system in a copepod, the first identification of A-type ASTs from a non-decapod crustacean, the first report of crustacean A-type ASTs possessing isoleucine C-terminal residues, and the first report from any species of an A-type peptide possessing a valine C-terminal residue.


Assuntos
Copépodes/genética , Sistema Nervoso/metabolismo , Neuropeptídeos/genética , Amidas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência de Bases , Copépodes/metabolismo , Insetos/genética , Dados de Sequência Molecular , Sistema Nervoso/química , Neuropeptídeos/isolamento & purificação , Neuropeptídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/genética , Estrutura Terciária de Proteína/genética , Distribuição Tecidual
15.
Gen Comp Endocrinol ; 156(2): 246-64, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18321503

RESUMO

The development of expressed sequence tags (ESTs) for crustacean cDNA libraries and their deposition in publicly accessible databases has generated a rich resource for peptide discovery in this commercially and ecologically important arthropod subphylum. Here, we have conducted in silico searches of these databases for unannotated ESTs encoding putative neuropeptide precursors using the BLAST program tblastn, and have predicted the mature forms of the peptides encoded by them. The primary strategy used was to query the database with known decapod prepro-hormone sequences or, in some instances, insect precursor protein sequences. For neuropeptides for which no prepro-hormones are known, the peptides themselves were used as queries. For those peptides expected to originate from a common precursor, the individual sequences were combined, with each peptide flanked by a dibasic processing site and, if amidated, a glycine residue. Using these approaches, 13 unannotated ESTs encoding putative neuropeptide precursors were found. For example, using the first strategy, putative Marsupenaeus japonicus prepro-hormones encoding B-type allatostatins, neuropeptide F (NPF), and orcokinins were identified. Similarly, several Homarus americanus ESTs encoding putative orcokinin precursors were found. In addition to the decapod prepro-hormones, ESTs putatively encoding a NPF isoform and a red pigment concentrating hormone-like peptide were identified from the cladoceran Daphnia magna, as was one EST putatively encoding multiple tachykinin-related peptides from the isopod Eurydice pulchra. Using the second strategy, we identified a Carcinus maenas EST encoding HIGSLYRamide, a peptide recently discovered via mass spectrometry from Cancer productus. Using mass spectral methods we confirmed that this peptide is also present in Carcinus maenas. Collectively over 50 novel crustacean peptides were predicted from the identified ESTs, providing a strong foundation for future investigations of the evolution, regulation and function of these and related molecules in this arthropod taxon.


Assuntos
Crustáceos/química , Neuropeptídeos/genética , Sequência de Aminoácidos , Animais , Braquiúros , Simulação por Computador , Daphnia , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Análise de Fourier , Espectrometria de Massas , Dados de Sequência Molecular , Nephropidae , Neuropeptídeos/química , Neuropeptídeos/isolamento & purificação , Oligopeptídeos/química , Oligopeptídeos/genética , Penaeidae , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/química , Software , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Taquicininas/química , Taquicininas/genética , Transcrição Gênica
16.
Gen Comp Endocrinol ; 156(2): 395-409, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18304551

RESUMO

The American lobster Homarus americanus is a decapod crustacean with both high economic and scientific importance. To facilitate physiological investigations of peptide transmitter/hormone function in this species, we have used matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nanoscale liquid chromatography coupled to electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoLC-ESI-Q-TOF MS/MS) to elucidate the peptidome present in its nervous system and neuroendocrine organs. In total, 84 peptides were identified, including 27 previously known H. americanus peptides (e.g., VYRKPPFNGSIFamide [Val(1)-SIFamide]), 23 peptides characterized previously from other decapods, but new to the American lobster (e.g., pQTFQYSRGWTNamide [Arg(7)-corazonin]), and 34 new peptides de novo sequenced/detected for the first time in this study. Of particular note are a novel B-type allatostatin (TNWNKFQGSWamide) and several novel FMRFamide-related peptides, including an unsulfated analog of sulfakinin (GGGEYDDYGHLRFamide), two myosuppressins (QDLDHVFLRFamide and pQDLDHVFLRFamide), and a collection of short neuropeptide F isoforms (e.g., DTSTPALRLRFamide and FEPSLRLRFamide). Our data also include the first detection of multiple tachykinin-related peptides in a non-brachyuran decapod, as well as the identification of potential individual-specific variants of orcokinin and orcomyotropin-related peptide. Taken collectively, our results not only expand greatly the number of known H. americanus neuropeptides, but also provide a framework for future studies on the physiological roles played by these molecules in this commercially and scientifically important species.


Assuntos
Nephropidae/fisiologia , Neuropeptídeos/metabolismo , Sistemas Neurossecretores/metabolismo , Neurotransmissores/metabolismo , Hormônios Peptídicos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Formaldeído/química , Espectrometria de Massas , Neuropeptídeos/análise , Neurotransmissores/análise , Hormônios Peptídicos/análise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Taquicininas/biossíntese , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA