Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Adv ; 73: 108378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38754797

RESUMO

The bioprocessing industry is undergoing a significant transformation in its approach to quality assurance, shifting from the traditional Quality by Testing (QbT) to Quality by Design (QbD). QbD, a systematic approach to quality in process development, integrates quality into process design and control, guided by regulatory frameworks. This paradigm shift enables increased operational efficiencies, reduced market time, and ensures product consistency. The implementation of QbD is framed around key elements such as defining the Quality Target Product Profile (QTPPs), identifying Critical Quality Attributes (CQAs), developing Design Spaces (DS), establishing Control Strategies (CS), and maintaining continual improvement. The present critical analysis delves into the intricacies of each element, emphasizing their role in ensuring consistent product quality and regulatory compliance. The integration of Industry 4.0 and 5.0 technologies, including Artificial Intelligence (AI), Machine Learning (ML), Internet of Things (IoT), and Digital Twins (DTs), is significantly transforming the bioprocessing industry. These innovations enable real-time data analysis, predictive modelling, and process optimization, which are crucial elements in QbD implementation. Among these, the concept of DTs is notable for its ability to facilitate bi-directional data communication and enable real-time adjustments and therefore optimize processes. DTs, however, face implementation challenges such as system integration, data security, and hardware-software compatibility. These challenges are being addressed through advancements in AI, Virtual Reality/ Augmented Reality (VR/AR), and improved communication technologies. Central to the functioning of DTs is the development and application of various models of differing types - mechanistic, empirical, and hybrid. These models serve as the intellectual backbone of DTs, providing a framework for interpreting and predicting the behaviour of their physical counterparts. The choice and development of these models are vital for the accuracy and efficacy of DTs, enabling them to mirror and predict the real-time dynamics of bioprocessing systems. Complementing these models, advancements in data collection technologies, such as free-floating wireless sensors and spectroscopic sensors, enhance the monitoring and control capabilities of DTs, providing a more comprehensive and nuanced understanding of the bioprocessing environment. This review offers a critical analysis of the prevailing trends in model-based bioprocessing development within the sector.


Assuntos
Inteligência Artificial , Biotecnologia , Biotecnologia/métodos , Internet das Coisas , Aprendizado de Máquina , Controle de Qualidade
2.
Biotechnol Adv ; 43: 107601, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682871

RESUMO

There has been an increased interest in replacing synthetic colorants by colorants obtained from natural sources, especially microbial pigments. Monascus pigments have been used as natural colorings and food additives in Asia for centuries but have raised toxicity issues. Recently, Talaromyces/Penicillium species have been recognized as potential strains to produce natural pigments similar to those produced by Monascus species. To date, it has not been published a literature compilation about the research and development activity of Talaromyces/Penicillium pigments. Developing a new bioprocess requires several steps, from an initial concept to a practical and feasible application. Industrial applications of fungal pigments will depend on: (i) characterization of the molecules to assure a safe consumption, (ii) stability of the pigments to the processing conditions required by the products where they will be incorporated, (iii) optimizing process conditions to achieve high yields, iv) implementing an efficient product recovery and (v) scale-up of the bioprocess. The above aspects have been reviewed in detail to evaluate the feasibility of reaching a commercial scale of the pigments produced by Talaromyces/Penicillium. Finally, the biological activities of the pigments and their potential applications are discussed.


Assuntos
Penicillium , Talaromyces , Ásia , Biotecnologia , Pigmentos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA