Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Cell ; 82(11): 2132-2147.e6, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35447083

RESUMO

Mouse pericentromeric DNA is composed of tandem major satellite repeats, which are heterochromatinized and cluster together to form chromocenters. These clusters are refractory to DNA repair through homologous recombination (HR). The mechanisms by which pericentromeric heterochromatin imposes a barrier on HR and the implications of repeat clustering are unknown. Here, we compare the spatial recruitment of HR factors upon double-stranded DNA breaks (DSBs) induced in human and mouse pericentromeric heterochromatin, which differ in their capacity to form clusters. We show that while DSBs increase the accessibility of human pericentromeric heterochromatin by disrupting HP1α dimerization, mouse pericentromeric heterochromatin repeat clustering imposes a physical barrier that requires many layers of de-compaction to be accessed. Our results support a model in which the 3D organization of heterochromatin dictates the spatial activation of DNA repair pathways and is key to preventing the activation of HR within clustered repeats and the onset of chromosomal translocations.


Assuntos
Heterocromatina , Translocação Genética , Animais , Análise por Conglomerados , Quebras de DNA de Cadeia Dupla , Heterocromatina/genética , Recombinação Homóloga/genética , Camundongos
2.
Mol Cell ; 81(12): 2596-2610.e7, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33961796

RESUMO

p53-binding protein 1 (53BP1) regulates both the DNA damage response and p53 signaling. Although 53BP1's function is well established in DNA double-strand break repair, how its role in p53 signaling is modulated remains poorly understood. Here, we identify the scaffolding protein AHNAK as a G1 phase-enriched interactor of 53BP1. We demonstrate that AHNAK binds to the 53BP1 oligomerization domain and controls its multimerization potential. Loss of AHNAK results in hyper-accumulation of 53BP1 on chromatin and enhanced phase separation, culminating in an elevated p53 response, compromising cell survival in cancer cells but leading to senescence in non-transformed cells. Cancer transcriptome analyses indicate that AHNAK-53BP1 cooperation contributes to the suppression of p53 target gene networks in tumors and that loss of AHNAK sensitizes cells to combinatorial cancer treatments. These findings highlight AHNAK as a rheostat of 53BP1 function, which surveys cell proliferation by preventing an excessive p53 response.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Fase G1/fisiologia , Histonas/metabolismo , Humanos , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/fisiologia
3.
Nature ; 600(7890): 748-753, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853474

RESUMO

Centromeric integrity is key for proper chromosome segregation during cell division1. Centromeres have unique chromatin features that are essential for centromere maintenance2. Although they are intrinsically fragile and represent hotspots for chromosomal rearrangements3, little is known about how centromere integrity in response to DNA damage is preserved. DNA repair by homologous recombination requires the presence of the sister chromatid and is suppressed in the G1 phase of the cell cycle4. Here we demonstrate that DNA breaks that occur at centromeres in G1 recruit the homologous recombination machinery, despite the absence of a sister chromatid. Mechanistically, we show that the centromere-specific histone H3 variant CENP-A and its chaperone HJURP, together with dimethylation of lysine 4 in histone 3 (H3K4me2), enable a succession of events leading to the licensing of homologous recombination in G1. H3K4me2 promotes DNA-end resection by allowing DNA damage-induced centromeric transcription and increased formation of DNA-RNA hybrids. CENP-A and HJURP interact with the deubiquitinase USP11, enabling formation of the RAD51-BRCA1-BRCA2 complex5 and rendering the centromeres accessible to RAD51 recruitment and homologous recombination in G1. Finally, we show that inhibition of homologous recombination in G1 leads to centromeric instability and chromosomal translocations. Our results support a model in which licensing of homologous recombination at centromeric breaks occurs throughout the cell cycle to prevent the activation of mutagenic DNA repair pathways and preserve centromeric integrity.


Assuntos
Proteínas Cromossômicas não Histona , Reparo do DNA , Proteínas de Ligação a DNA , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Recombinação Homóloga
4.
Nature ; 600(7888): 329-333, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819671

RESUMO

Efficient humoral responses rely on DNA damage, mutagenesis and error-prone DNA repair. Diversification of B cell receptors through somatic hypermutation and class-switch recombination are initiated by cytidine deamination in DNA mediated by activation-induced cytidine deaminase (AID)1 and by the subsequent excision of the resulting uracils by uracil DNA glycosylase (UNG) and by mismatch repair proteins1-3. Although uracils arising in DNA are accurately repaired1-4, how these pathways are co-opted to generate mutations and double-strand DNA breaks in the context of somatic hypermutation and class-switch recombination is unknown1-3. Here we performed a genome-wide CRISPR-Cas9 knockout screen for genes involved in class-switch recombination and identified FAM72A, a protein that interacts with the nuclear isoform of UNG (UNG2)5 and is overexpressed in several cancers5. We show that the FAM72A-UNG2 interaction controls the levels of UNG2 and that class-switch recombination is defective in Fam72a-/- B cells due to the upregulation of UNG2. Moreover, we show that somatic hypermutation is reduced in Fam72a-/- B cells and that its pattern is skewed upon upregulation of UNG2. Our results are consistent with a model in which FAM72A interacts with UNG2 to control its physiological level by triggering its degradation, regulating the level of uracil excision and thus the balance between error-prone and error-free DNA repair. Our findings have potential implications for tumorigenesis, as reduced levels of UNG2 mediated by overexpression of Fam72a would shift the balance towards mutagenic DNA repair, rendering cells more prone to acquire mutations.


Assuntos
Linfócitos B , Reparo de Erro de Pareamento de DNA , Switching de Imunoglobulina , Região de Troca de Imunoglobulinas , Mutação , Hipermutação Somática de Imunoglobulina , Animais , Feminino , Masculino , Camundongos , Linfócitos B/metabolismo , Sistemas CRISPR-Cas/genética , Genoma/genética , Switching de Imunoglobulina/genética , Região de Troca de Imunoglobulinas/genética , Hipermutação Somática de Imunoglobulina/genética , Regulação para Cima , Uracila/metabolismo
5.
Genes Dev ; 33(11-12): 684-704, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048545

RESUMO

DNA double-strand breaks (DSBs) at RNA polymerase II (RNAPII) transcribed genes lead to inhibition of transcription. The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in transcription inhibition at DSBs by stimulating proteasome-dependent eviction of RNAPII at these lesions. How DNA-PK triggers RNAPII eviction to inhibit transcription at DSBs remains unclear. Here we show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. In response to DSBs, WWP2 targets the RNAPII subunit RPB1 for K48-linked ubiquitylation, thereby driving DNA-PK- and proteasome-dependent eviction of RNAPII. The lack of WWP2 or expression of nonubiquitylatable RPB1 abrogates the binding of nonhomologous end joining (NHEJ) factors, including DNA-PK and XRCC4/DNA ligase IV, and impairs DSB repair. These findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação
6.
Mol Cell ; 63(5): 726-8, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27588600

RESUMO

Identifying DNA fragile sites is crucial to reveal hotspots of genomic rearrangements, yet their precise mapping has been a challenge. A new study in this issue of Molecular Cell (Canela et al., 2016) introduces a highly sensitive and accurate method to detect DNA breaks in vivo that can be adapted to various experimental and clinical settings.


Assuntos
Cromatina , Sítios Frágeis do Cromossomo , DNA , Genoma , Genômica , Humanos
7.
Mol Cell ; 63(2): 293-305, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27397684

RESUMO

Repetitive DNA is packaged into heterochromatin to maintain its integrity. We use CRISPR/Cas9 to induce DSBs in different mammalian heterochromatin structures. We demonstrate that in pericentric heterochromatin, DSBs are positionally stable in G1 and recruit NHEJ factors. In S/G2, DSBs are resected and relocate to the periphery of heterochromatin, where they are retained by RAD51. This is independent of chromatin relaxation but requires end resection and RAD51 exclusion from the core. DSBs that fail to relocate are engaged by NHEJ or SSA proteins. We propose that the spatial disconnection between end resection and RAD51 binding prevents the activation of mutagenic pathways and illegitimate recombination. Interestingly, in centromeric heterochromatin, DSBs recruit both NHEJ and HR proteins throughout the cell cycle. Our results highlight striking differences in the recruitment of DNA repair factors between pericentric and centromeric heterochromatin and suggest a model in which the commitment to specific DNA repair pathways regulates DSB position.


Assuntos
Centrômero/metabolismo , Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Heterocromatina/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sistemas CRISPR-Cas , Centrômero/química , Centrômero/genética , Reparo do DNA por Junção de Extremidades , Fase G2 , Heterocromatina/química , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Camundongos , Células NIH 3T3 , Interferência de RNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Reparo de DNA por Recombinação , Fase S , Fatores de Tempo , Transfecção
8.
Nature ; 543(7644): 211-216, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28241136

RESUMO

P53-binding protein 1 (53BP1) is a multi-functional double-strand break repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumours to poly-ADP-ribose polymerase-1 (PARP) inhibitors. Central to all 53BP1 activities is its recruitment to double-strand breaks via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, Tudor interacting repair regulator (TIRR), that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, the protein kinase ataxia-telangiectasia mutated (ATM) phosphorylates 53BP1 and recruits RAP1-interacting factor 1 (RIF1) to dissociate the 53BP1-TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to double-strand breaks. Depletion of TIRR destabilizes 53BP1 in the nuclear-soluble fraction and alters the double-strand break-induced protein complex centring 53BP1. These findings identify TIRR as a new factor that influences double-strand break repair using a unique mechanism of masking the histone methyl-lysine binding function of 53BP1.


Assuntos
Proteínas de Transporte/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Feminino , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Domínios Proteicos , Proteínas de Ligação a RNA , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química
9.
Genes Dev ; 28(22): 2450-63, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25366693

RESUMO

Faithful DNA repair is essential to avoid chromosomal rearrangements and promote genome integrity. Nuclear organization has emerged as a key parameter in the formation of chromosomal translocations, yet little is known as to whether DNA repair can efficiently occur throughout the nucleus and whether it is affected by the location of the lesion. Here, we induce DNA double-strand breaks (DSBs) at different nuclear compartments and follow their fate. We demonstrate that DSBs induced at the nuclear membrane (but not at nuclear pores or nuclear interior) fail to rapidly activate the DNA damage response (DDR) and repair by homologous recombination (HR). Real-time and superresolution imaging reveal that DNA DSBs within lamina-associated domains do not migrate to more permissive environments for HR, like the nuclear pores or the nuclear interior, but instead are repaired in situ by alternative end-joining. Our results are consistent with a model in which nuclear position dictates the choice of DNA repair pathway, thus revealing a new level of regulation in DSB repair controlled by spatial organization of DNA within the nucleus.


Assuntos
Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Linhagem Celular Tumoral , Cromatina/genética , Células HeLa , Recombinação Homóloga/genética , Humanos , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo
10.
Nat Rev Mol Cell Biol ; 10(4): 243-54, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19277046

RESUMO

DNA repair and maintenance of genome stability are crucial to cellular and organismal function, and defects in these processes have been implicated in cancer and ageing. Detailed molecular, biochemical and genetic analyses have outlined the molecular framework involved in cellular DNA-repair pathways, but recent cell-biological approaches have revealed important roles for the spatial and temporal organization of the DNA-repair machinery during the recognition of DNA lesions and the assembly of repair complexes. It has also become clear that local higher-order chromatin structure, chromatin dynamics and non-random global genome organization are key factors in genome maintenance. These cell-biological features of DNA repair illustrate an emerging role for nuclear architecture in multiple aspects of genome maintenance.


Assuntos
Núcleo Celular/genética , Reparo do DNA , Genoma , Animais , Cromatina/metabolismo , Dano ao DNA , Humanos , Modelos Biológicos
11.
Chromosoma ; 133(1): 1-3, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38355990
12.
PLoS Genet ; 12(2): e1005791, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26845027

RESUMO

DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation.


Assuntos
Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Tanquirases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Tanquirases/genética , Transativadores/genética , Transativadores/metabolismo , Ubiquitina-Proteína Ligases
14.
Nucleic Acids Res ; 42(9): 5689-701, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24682826

RESUMO

DNA double-strand breaks (DSBs) are the most severe type of DNA damage. DSBs are repaired by non-homologous end-joining or homology directed repair (HDR). Identifying novel small molecules that affect HDR is of great importance both for research use and therapy. Molecules that elevate HDR may improve gene targeting whereas inhibiting molecules can be used for chemotherapy, since some of the cancers are more sensitive to repair impairment. Here, we performed a high-throughput chemical screen for FDA approved drugs, which affect HDR in cancer cells. We found that HDR frequencies are increased by retinoic acid and Idoxuridine and reduced by the antihypertensive drug Spironolactone. We further revealed that Spironolactone impairs Rad51 foci formation, sensitizes cancer cells to DNA damaging agents, to Poly (ADP-ribose) polymerase (PARP) inhibitors and cross-linking agents and inhibits tumor growth in xenografts, in mice. This study suggests Spironolactone as a new candidate for chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Reparo de DNA por Recombinação/efeitos dos fármacos , Espironolactona/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Método Duplo-Cego , Aprovação de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Rad51 Recombinase/metabolismo , Estados Unidos , United States Food and Drug Administration , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nat Cell Biol ; 9(6): 675-82, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17486118

RESUMO

Formation of cancerous translocations requires the illegitimate joining of chromosomes containing double-strand breaks (DSBs). It is unknown how broken chromosome ends find their translocation partners within the cell nucleus. Here, we have visualized and quantitatively analysed the dynamics of single DSBs in living mammalian cells. We demonstrate that broken ends are positionally stable and unable to roam the cell nucleus. Immobilization of broken chromosome ends requires the DNA-end binding protein Ku80, but is independent of DNA repair factors, H2AX, the MRN complex and the cohesion complex. DSBs preferentially undergo translocations with neighbouring chromosomes and loss of local positional constraint correlates with elevated genomic instability. These results support a contact-first model in which chromosome translocations predominantly form among spatially proximal DSBs.


Assuntos
Núcleo Celular/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , DNA/genética , Translocação Genética/genética , Animais , Antígenos Nucleares/genética , Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/genética , Histonas/genética , Autoantígeno Ku , Substâncias Macromoleculares/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , Coesinas
16.
Nucleic Acids Res ; 40(22): 11363-79, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23034801

RESUMO

Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure.


Assuntos
Cromatina/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Raios gama , Heterocromatina , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Tolerância a Radiação , Reparo de DNA por Recombinação , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido
17.
Nat Commun ; 15(1): 5727, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977669

RESUMO

DNA replication and transcription generate DNA supercoiling, which can cause topological stress and intertwining of daughter chromatin fibers, posing challenges to the completion of DNA replication and chromosome segregation. Type II topoisomerases (Top2s) are enzymes that relieve DNA supercoiling and decatenate braided sister chromatids. How Top2 complexes deal with the topological challenges in different chromatin contexts, and whether all chromosomal contexts are subjected equally to torsional stress and require Top2 activity is unknown. Here we show that catalytic inhibition of the Top2 complex in interphase has a profound effect on the stability of heterochromatin and repetitive DNA elements. Mechanistically, we find that catalytically inactive Top2 is trapped around heterochromatin leading to DNA breaks and unresolved catenates, which necessitate the recruitment of the structure specific endonuclease, Ercc1-XPF, in an SLX4- and SUMO-dependent manner. Our data are consistent with a model in which Top2 complex resolves not only catenates between sister chromatids but also inter-chromosomal catenates between clustered repetitive elements.


Assuntos
DNA Topoisomerases Tipo II , Heterocromatina , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , Heterocromatina/metabolismo , Animais , Inibidores da Topoisomerase II/farmacologia , Sequências Repetitivas de Ácido Nucleico/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Replicação do DNA , DNA Super-Helicoidal/metabolismo , DNA Super-Helicoidal/química , Humanos , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , DNA/metabolismo , DNA/química , Interfase
18.
Res Sq ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645793

RESUMO

The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the spatiotemporal arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find a close link between chromatin mobility and transcriptional status: active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.

19.
bioRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162887

RESUMO

The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the 4D arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find that alterations in chromatin mobility, not promoter-enhancer distance, is more informative about transcriptional status. Active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.

20.
Proc Natl Acad Sci U S A ; 106(37): 15762-7, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19717431

RESUMO

The histone H3 variant CENP-A is required for epigenetic specification of centromere identity through a loading mechanism independent of DNA sequence. Using multiphoton absorption and DNA cleavage at unique sites by I-SceI endonuclease, we demonstrate that CENP-A is rapidly recruited to double-strand breaks in DNA, along with three components (CENP-N, CENP-T, and CENP-U) associated with CENP-A at centromeres. The centromere-targeting domain of CENP-A is both necessary and sufficient for recruitment to double-strand breaks. CENP-A accumulation at DNA breaks is enhanced by active non-homologous end-joining but does not require DNA-PKcs or Ligase IV, and is independent of H2AX. Thus, induction of a double-strand break is sufficient to recruit CENP-A in human and mouse cells. Finally, since cell survival after radiation-induced DNA damage correlates with CENP-A expression level, we propose that CENP-A may have a function in DNA repair.


Assuntos
Autoantígenos/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Animais , Autoantígenos/química , Autoantígenos/genética , Transporte Biológico Ativo , Linhagem Celular , Centrômero/metabolismo , Proteína Centromérica A , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Humanos , Cinética , Camundongos , Modelos Biológicos , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA