Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt B): 113202, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35398077

RESUMO

The presence and longevity of nanomaterials in the ecosystem, as well as their properties, account for environmental toxicity. When nanomaterials in terrestrial and aquatic systems are exposed to the prevailing environmental conditions, they undergo various transformations such as dissociation, dissolution, and aggregation, which affects the food chain. The toxicity of nanomaterials is influenced by a variety of factors, including environmental factors and its physico-chemical characteristics. Bioaccumulation, biotransformation, and biomagnification are the mechanisms that have been identified for determining the fate of nanomaterials. The route taken by nanomaterials to reach living cells provides us with information about their toxicity profile. This review discusses the recent advances in the transport, transformation, and fate of nanomaterials after they are released into the environment. The review also discusses how nanoparticles affect lower trophic organisms through direct contact, the impact of nanoparticles on higher trophic organisms, and the possible options for remediation.


Assuntos
Nanopartículas , Nanoestruturas , Poluentes Químicos da Água , Bioacumulação , Ecossistema , Cadeia Alimentar , Nanopartículas/toxicidade , Nanoestruturas/química , Nanoestruturas/toxicidade , Poluentes Químicos da Água/análise
2.
Micron ; 172: 103486, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37262930

RESUMO

Recent advancements in the field of nanotechnology have enabled targeted delivery of drug agents in vivo with minimal side effects. The use of nanoparticles for bio-imaging has revolutionized the field of nanomedicine by enabling non-invasive targeting and selective delivery of active drug moieties in vivo. Various inorganic nanomaterials like mesoporous silica nanoparticles, gold nanoparticles, magnetite nanoparticles graphene-based nanomaterials etc., have been created for multimodal therapies with varied multi-imaging modalities. These nanomaterials enable us to overcome the disadvantages of conventional imaging contrast agents (organic dyes) such as lack of stability in vitro and in vivo, high reactivity, low-quantum yield and poor photo stability. Inorganic nanomaterials can be easily fabricated, functionalised and modified as per requirements. Recently, advancements in synthesis techniques, such as the ability to generate molecules and construct supramolecular structures for specific functionalities, have boosted the usage of engineered nanomaterials. Their intrinsic physicochemical properties are unique and they possess excellent biocompatibility. Inorganic nanomaterial research has developed as the most actively booming research fields in biotechnology and biomedicine. Inorganic nanomaterials like gold nanoparticles, magnetic nanoparticles, mesoporous silica nanoparticles, graphene-based nanomaterials and quantum dots have shown excellent use in bioimaging, targeted drug delivery and cancer therapies. Biocompatibility of nanomaterials is an important aspect for the evolution of nanomaterials in the bench to bedside transition. The conduction of thorough and meticulous study for safety and efficacy in well-designed clinical trials is absolutely necessary to determine the functional and structural relationship between the engineered nanomaterial and its toxicity. In this article an attempt is made to throw some light on the current scenario and developments made in the field of nanomaterials in bioimaging.


Assuntos
Grafite , Nanopartículas de Magnetita , Nanopartículas , Grafite/química , Ouro/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA