RESUMO
Exposure to polycyclic aromatic hydrocarbons (PAHs), ubiquitously environmental contaminant, leads to the development of major toxic effects on human health, such as carcinogenic and immunosuppressive alterations reported for the most studied PAH, i.e., benzo(a)pyrene (B(a)P). In order to assess the risk associated with this exposure, it is necessary to have predictive biomarkers. Thus, extracellular vesicles (EVs) and their microRNA (miRNA) contents, have recently been proposed as potentially interesting biomarkers in Toxicology. Our study here explores the use of vesicles secreted and found in blood fluids, and their miRNAs, as biomarkers of exposure to B(a)P alone and within a realistic occupational mixture. We isolated EVs from primary human cultured blood mononuclear cells (PBMCs) and rat plasma after PAH exposure and reported an increased EV production by B(a)P, used either alone or in the mixture, in vitro and in vivo. We then investigated the association of this EV release with the blood concentration of the 7,8,9,10-hydroxy (tetrol)-B(a)P reactive metabolite, in rats. By performing RNA-sequencing (RNA-seq) of miRNAs in PBMC-derived EVs, we analyzed miRNA profiles and demonstrated the regulation of the expression of miR-342-3p upon B(a)P exposure. We then validated B(a)P-induced changes of miR-342-3p expression in vivo in rat plasma-derived EVs. Overall, our study highlights the feasibility of using EVs and their miRNA contents, as biomarkers of PAH exposure and discusses their potential in environmental Toxicology.
Assuntos
Benzo(a)pireno , Biomarcadores , Vesículas Extracelulares , Leucócitos Mononucleares , MicroRNAs , Hidrocarbonetos Policíclicos Aromáticos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Animais , MicroRNAs/sangue , Humanos , Biomarcadores/sangue , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/sangue , Benzo(a)pireno/toxicidade , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Ratos , Masculino , Poluentes Ambientais/toxicidade , Poluentes Ambientais/sangue , Ratos Wistar , Células CultivadasRESUMO
Non-alcoholic fatty liver disease (NAFLD) is a worldwide epidemic for which environmental contaminants are increasingly recognized as important etiological factors. Among them, the combination of benzo[a]pyrene (B[a]P), a potent environmental carcinogen, with ethanol, was shown to induce the transition of steatosis toward steatohepatitis. However, the underlying mechanisms involved remain to be deciphered. In this context, we used high-fat diet fed zebrafish model, in which we previously observed progression of steatosis to a steatohepatitis-like state following a 7-day-co-exposure to 43 mM ethanol and 25 nM B[a]P. Transcriptomic analysis highlighted the potent role of mitochondrial dysfunction, alterations in heme and iron homeostasis, involvement of aryl hydrocarbon receptor (AhR) signaling, and oxidative stress. Most of these mRNA dysregulations were validated by RT-qPCR. Moreover, similar changes were observed using a human in vitro hepatocyte model, HepaRG cells. The mitochondria structural and functional alterations were confirmed by transmission electronic microscopy and Seahorse technology, respectively. Involvement of AhR signaling was evidenced by using in vivo an AhR antagonist, CH223191, and in vitro in AhR-knock-out HepaRG cells. Furthermore, as co-exposure was found to increase the levels of both heme and hemin, we investigated if mitochondrial iron could induce oxidative stress. We found that mitochondrial labile iron content was raised in toxicant-exposed larvae. This increase was prevented by the iron chelator, deferoxamine, which also inhibited liver co-exposure toxicity. Overall, these results suggest that the increase in mitochondrial iron content induced by B[a]P/ethanol co-exposure causes mitochondrial dysfunction that contributes to the pathological progression of NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Etanol/toxicidade , Peixe-Zebra , Benzo(a)pireno/toxicidade , Larva , Transcriptoma , Mitocôndrias , HemeRESUMO
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed environmental contaminants, known to affect T lymphocytes. However, the molecular targets and pathways involved in their immunotoxic effects in human T lymphocytes remain unknown. Here, we analyzed the gene expression profile of primary human T lymphocytes treated with the prototypical PAH, benzo[α]pyrene (B[α]P), using a microarray-based transcriptome analysis. After a 48 h exposure to B[α]P, we identified 158 genes differentially expressed in T lymphocytes, including not only genes well-known to be affected by PAHs such as the cytochromes P450 (CYP) 1A1 and 1B1, but also others not previously shown to be targeted by B[α]P such as genes encoding the gap junction beta (GJB)-2 and 6 proteins. Functional enrichment analysis revealed that these candidates were significantly associated with the aryl hydrocarbon (AhR) and interferon (IFN) signaling pathways; a marked alteration in T lymphocyte recruitment was also observed. Using functional tests in transwell migration experiments, B[α]P was then shown to significantly decrease the chemokine (C-X-C motif) ligand 12-induced chemotaxis and transendothelial migration of T lymphocytes. In total, this study opens the way to unsuspected responsive pathway of interest, i.e., T lymphocyte migration, thus providing a more thorough understanding of the molecular basis of the immunotoxicity of PAHs.
Assuntos
Benzo(a)pireno/toxicidade , Genoma Humano , Linfócitos T/metabolismo , Transcrição Gênica/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interferons/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Migração Transendotelial e Transepitelial/efeitos dos fármacosRESUMO
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates immunosuppression caused by a variety of environmental contaminants, such as polycyclic aromatic hydrocarbons or dioxins. Recent evidence suggests that AhR plays an important role in T-cell-mediated immune responses by affecting the polarization and differentiation of activated T cells. However, the regulation of AhR expression in activated T cells remains poorly characterized. In the present study, we used purified human T cells stimulated with anti-CD3 and anti-CD28 Abs to investigate the effect of T-cell activation on AhR mRNA and protein expression. The expression of AhR mRNA increased significantly and rapidly after T-cell activation, identifying AhR as an immediate-early activation gene. AhR upregulation occurred in all of the T-cell subtypes, and is associated with its nuclear translocation and induction of the cytochromes P-450 1A1 and 1B1 mRNA expression in the absence of exogenous signals. In addition, the use of an AhR antagonist or siRNA-mediated AhR knockdown significantly inhibited IL-22 expression, suggesting that expression and functional activation of AhR is necessary for the secretion of IL-22 by activated T cells. In conclusion, our data support the idea that AhR is a major player in T-cell physiology.
Assuntos
Núcleo Celular/imunologia , Ativação Linfocitária/fisiologia , Receptores de Hidrocarboneto Arílico/imunologia , Linfócitos T/imunologia , Regulação para Cima/imunologia , Transporte Ativo do Núcleo Celular/fisiologia , Hidrocarboneto de Aril Hidroxilases/biossíntese , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/imunologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/imunologia , Citocromo P-450 CYP1B1 , Técnicas de Silenciamento de Genes , Humanos , Interleucinas/genética , Interleucinas/imunologia , Interleucinas/metabolismo , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Receptores de Hidrocarboneto Arílico/biossíntese , Receptores de Hidrocarboneto Arílico/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Regulação para Cima/genética , Interleucina 22RESUMO
SCOPE: Akkermansia muciniphila (A. muciniphila) are Gram negative commensal bacteria, degrading mucin in the intestinal mucosa, modulating intestinal permeability and inflammation in the digestive tract, liver, and blood. Some components can promote the relative abundance of A. muciniphila in the gut microbiota, but lower levels of A. muciniphila are more commonly found in people with obesity, diabetes, metabolic syndromes, or inflammatory digestive diseases. Over-intake of ethanol can also induce a decrease of A. muciniphila, associated with dysregulation of microbial metabolite production, impaired intestinal permeability, induction of chronic inflammation, and production of cytokines. METHODS AND RESULTS: Using a PRISMA search strategy, a review is performed on the bacteriological characteristics of A. muciniphila, the factors capable of modulating its relative abundance in the digestive tract and its probiotic use in alcohol-related liver diseases (alcoholic hepatitis, cirrhosis, hepatocellular carcinoma, hepatic transplantation, partial hepatectomy). CONCLUSION: Several studies have shown that supplementation with A. muciniphila can improve ethanol-related hepatic pathologies, and highlight the interest in using this bacterial species as a probiotic.
Assuntos
Hepatopatias , Verrucomicrobia , Humanos , Verrucomicrobia/fisiologia , Hepatopatias/etiologia , Inflamação/microbiologia , Etanol/efeitos adversos , AkkermansiaRESUMO
Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is a chronic disease with increasing prevalence and for which non-invasive biomarkers are needed. Environmental endocrine disruptors (EDs) are known to be involved in the onset and progression of MASLD and assays to monitor their impact on the liver are being developed. Extracellular vesicles (EVs) mediate cell communication and their content reflects the pathophysiological state of the cells from which they are released. They can thus serve as biomarkers of the pathological state of the liver and of exposure to EDs. In this review, we present the relationships between DEHP (Di(2-ethylhexyl) phthalate) and MASLD and highlight the potential of EVs as biomarkers of DEHP exposure and the resulting progression of MASLD.
RESUMO
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Assuntos
Poluentes Atmosféricos , Neoplasias Pulmonares , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Material Particulado/toxicidade , Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Microambiente TumoralRESUMO
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed environmental contaminants, triggering deleterious effects such as carcinogenicity and immunosuppression, and peripheral blood mononuclear cells (PBMCs) are among the main cell types targeted by these pollutants. In the present study, we sought to identify the expression profiles and function of miRNAs, gene regulators involved in major cellular processes recently linked to environmental pollutants, in PBMC-exposed to the prototypical PAH, benzo[a]pyrene (B[a]P). Using small RNA deep sequencing, we identified several B[a]P-responsive miRNAs. Bioinformatics analyses showed that their predicted targets could modulate biological processes relevant to cell death and survival. Further studies of the most highly induced miRNA, miR-132, showed that its up-regulation by B[a]P was time- and dose-dependent and required aryl hydrocarbon receptor (AhR) activation. By evaluating the role of miR-132 in B[a]P-induced cell death, we propose a mechanism linking B[a]P-induced miR-132 expression and cytochromes P-450 (CYPs) 1A1 and 1B1 mRNA levels, which could contribute to the apoptotic response of PBMCs. Altogether, this study increases our understanding of the roles of miRNAs induced by B[a]P and provides the basis for further investigations into the mechanisms of gene expression regulation by PAHs.
Assuntos
Poluentes Ambientais , MicroRNAs , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Benzo(a)pireno/toxicidade , Leucócitos Mononucleares , Sistema Enzimático do Citocromo P-450 , MicroRNAs/genética , Poluentes Ambientais/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismoRESUMO
Trivalent inorganic arsenic [As(III)] is an efficient anticancer agent used to treat patients suffering from acute promyelocytic leukemia. Recently, experimental studies have clearly demonstrated that this metalloid can also cure lymphoproliferative and/or pro-inflammatory syndromes in different murine models of chronic immune-mediated diseases. T helper (Th) 1 and Th17 lymphocytes play a central role in development of these diseases, in mice and humans, especially by secreting the potent pro-inflammatory cytokine interferon-γ and IL-17A, respectively. As(III) impairs basic functions of human T cells but its ability to modulate secretion of pro-inflammatory cytokines by differentiated Th lymphocytes is unknown. In the present study, we demonstrate that As(III), used at concentrations clinically achievable in plasma of patients, has no effect on the secretion of interferon-γ from Th1 cells but almost totally blocks the expression and the release of IL-17A from human Th17 lymphocytes co-stimulated for five days with anti-CD3 and anti-CD28 antibodies, in the presence of differentiating cytokines. In addition, As(III) specifically reduces mRNA levels of the retinoic-related orphan receptor (ROR)C gene which encodes RORγt, a key transcription factor controlling optimal IL-17 expression in fully differentiated Th17 cells. The metalloid also blocks initial expression of IL-17 gene induced by the co-stimulation, probably in part by impairing activation of the JNK/c-Jun pathway. In conclusion, our results demonstrate that As(III) represses expression of the major pro-inflammatory cytokine IL-17A produced by human Th17 lymphocytes, thus strengthening the idea that As(III) may be useful to treat inflammatory immune-mediated diseases in humans.
Assuntos
Arsenicais/farmacologia , Interleucina-17/antagonistas & inibidores , Células Th17/efeitos dos fármacos , Western Blotting , Ensaio de Imunoadsorção Enzimática , Humanos , Interferon gama/análise , Interleucina-17/análise , Interleucina-17/biossíntese , Interleucina-2/análise , Interleucinas/análise , Ativação Linfocitária/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Células Th17/química , Células Th17/metabolismo , Células Th17/fisiologia , Interleucina 22RESUMO
Inorganic arsenic, a major environmental contaminant, exerts immunosuppressive effects towards human cells. We previously demonstrated that relevant environmental concentrations of inorganic arsenic altered morphology and functions of human primary macrophages, suggesting interference with macrophage differentiation program. The goal of this study was to determine global effect of low concentrations of arsenic trioxide (As(2)O(3)) on gene expression profile in human primary macrophages, in order to identify molecular targets of inorganic arsenic, especially those relevant of macrophage differentiation process. Using a pan-genomic microarray, we demonstrate that exposure of human blood monocyte-derived macrophages to 1microM As(2)O(3) for 72h, a non-cytototoxic concentration, results in up-regulation of 32 genes and repression of 91 genes. Among these genes, 26 are specifically related to differentiation program of human macrophages. Particularly, we validated that As(2)O(3) strongly alters expression of MMP9, MMP12, CCL22, SPON2 and CXCL2 genes, which contribute to major macrophagic functions. Most of these metalloid effects were reversed when As(2)O(3)-treated macrophages were next cultured in arsenic-free medium. We also show that As(2)O(3) similarly regulates expression of this macrophagic gene subset in human alveolar macrophages, the phenotype of which closely resembles that of blood monocyte-derived macrophage. In conclusion, our study demonstrates that environmentally relevant concentrations of As(2)O(3) impair expression of macrophage-specific genes, which fully supports interference of metalloid with differentiation program of human macrophages.
Assuntos
Perfilação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Óxidos/toxicidade , Trióxido de Arsênio , Arsenicais , Diferenciação Celular , Regulação para Baixo , Humanos , Macrófagos/imunologia , Regulação para CimaRESUMO
The endocrine disruptor and food contaminant bisphenol A (BPA) is frequently present in consumer plastics and can produce several adverse health effects participating in the development of inflammatory and autoimmune diseases. Regulatory restrictions have been established to prevent risks for human health, leading to the substitution of BPA by structural analogues, such as bisphenol S (BPS) and F (BPF). In this study, we aimed at comparing the in vitro impact of these bisphenols from 0.05 to 50,000â¯nM on Th17 differentiation, frequency and function in mouse systemic and intestinal immune T cells and in human blood T cells. This study reports the ability of these bisphenols, at low and environmentally relevant concentration, i.e, 0.05â¯nM, to increase significantly IL-17 production in mouse T cells but not in human T lymphocytes. The use of an aryl hydrocarbon receptor (AhR) specific inhibitor demonstrated its involvement in this bisphenol-induced IL-17 production. We also observed an increased IL-17 secretion by BPS and BPF, and not by BPA, in mouse naive T cells undergoing in vitro Th17 differentiation. In total, this study emphasizes the link between bisphenol exposures and the susceptibility to develop immune diseases, questioning thus the rational of their use to replace BPA.
Assuntos
Compostos Benzidrílicos/toxicidade , Linfócitos T CD4-Positivos/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Interleucina-17/metabolismo , Fenóis/toxicidade , Sulfonas/toxicidade , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Interleucinas/metabolismo , Camundongos Endogâmicos C3H , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/metabolismo , Baço/citologia , Interleucina 22RESUMO
Liver steatosis has been associated with various etiological factors (obesity, alcohol, environmental contaminants). How those factors work together to induce steatosis progression is still scarcely evaluated. Here, we tested whether phthalates could potentiate death of steatotic hepatocytes when combined with ethanol. Pre-steatotic WIF-B9 hepatocytes were co-exposed to mono (2-ethylhexyl) (MEHP, 500 nM; main metabolite of di (2-ethylhexyl) phthalate or DEHP) and ethanol (5 mM) for 5 days. An increased apoptotic death was detected, involving a DNA damage response. Using 4-Methypyrazole to inhibit ethanol metabolism, and CH-223191 to antagonize the AhR receptor, we found that an AhR-dependent increase in alcohol dehydrogenase (ADH) activity was essential for cell death upon MEHP/ethanol co-exposure. Toxicity was also prevented by HET0016 to inhibit the cytochrome P450 4A (CYP4A). Using the antioxidant thiourea, a role for oxidative stress was uncovered, notably triggering DNA damage. Finally, co-exposing the in vivo steatosis model of high fat diet (HFD)-zebrafish larvae to DEHP (2.56 nM)/ethanol (43 mM), induced the pathological progression of liver steatosis alongside an increased Cyp4t8 (human CYP4A homolog) mRNA expression. Altogether, these results further emphasized the deleterious impact of co-exposures to ethanol/environmental pollutant towards steatosis pathological progression, and unraveled a key role for ADH and CYP4A in such effects.
Assuntos
Álcool Desidrogenase/metabolismo , Morte Celular/efeitos dos fármacos , Citocromo P-450 CYP4A/metabolismo , Dietilexilftalato/análogos & derivados , Etanol/toxicidade , Fígado Gorduroso/patologia , Hepatócitos/efeitos dos fármacos , Animais , Dietilexilftalato/toxicidade , HumanosRESUMO
Benzo(a)pyrene (BP) is an environmental contaminant known to favor airway inflammation likely through up-regulation of pro-inflammatory cytokines. The present study was designed to characterize its effects toward interleukin-8 (IL-8), a well-established pulmonary inflammatory cytokine. In primary human macrophages, BP was shown to induce IL-8 expression at both mRNA and secretion levels in a dose-dependent manner. Such an up-regulation was likely linked to aryl hydrocarbon receptor (AhR)-activation since BP-mediated IL-8 induction was reduced after AhR expression knock-down through RNA interference. Moreover, electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation experiments showed BP-triggered binding of AhR to a consensus xenobiotic responsive element (XRE) found in the human IL-8 promoter. Finally, BP administration to mice led to over-expression of keratinocyte chemoattractant (KC), the murine functional homologue of IL-8, in lung. It also triggered the recruitment of neutrophils in bronchoalveolar lavage (BAL) fluids, which was however fully abolished in the presence of a chemical antagonist of the KC/IL-8 receptors CXCR1/CXCR2, thus supporting the functional and crucial involvement of KC in BP-induced lung inflammation. Overall, these data highlight an AhR-dependent regulation of IL-8 in response to BP that likely contributes to the airway inflammatory effects of this environmental chemical.
Assuntos
Benzo(a)pireno/toxicidade , Poluentes Ambientais/toxicidade , Interleucina-8/metabolismo , Pneumonia/induzido quimicamente , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Movimento Celular , Fatores Quimiotáticos/metabolismo , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Interleucina-8/genética , Queratinócitos/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Pneumonia/imunologia , Interferência de RNA , Receptores de Hidrocarboneto Arílico/genética , Receptores de Interleucina-8B/metabolismo , Elementos de Resposta , Regulação para CimaRESUMO
We previously demonstrated that co-exposing pre-steatotic hepatocytes to benzo[a]pyrene (B[a]P), a carcinogenic environmental pollutant, and ethanol, favored cell death. Here, the intracellular mechanisms underlying this toxicity were studied. Steatotic WIF-B9 hepatocytes, obtained by a 48h-supplementation with fatty acids, were then exposed to B[a]P/ethanol (10â¯nM/5â¯mM, respectively) for 5 days. Nitric oxide (NO) was demonstrated to be a pivotal player in the cell death caused by the co-exposure in steatotic hepatocytes. Indeed, by scavenging NO, CPTIO treatment of co-exposed steatotic cells prevented not only the increase in DNA damage and cell death, but also the decrease in the activity of CYP1, major cytochrome P450s of B[a]P metabolism. This would then lead to an elevation of B[a]P levels, thus possibly suggesting a long-lasting stimulation of the transcription factor AhR. Besides, as NO can react with superoxide anion to produce peroxynitrite, a highly oxidative compound, the use of FeTPPS to inhibit its formation indicated its participation in DNA damage and cell death, further highlighting the important role of NO. Finally, a possible key role for AhR was pointed out by using its antagonist, CH-223191. Indeed it prevented the elevation of ADH activity, known to participate to the ethanol production of ROS, notably superoxide anion. The transcription factor, NFκB, known to be activated by ROS, was shown to be involved in the increase in iNOS expression. Altogether, these data strongly suggested cooperative mechanistic interactions between B[a]P via AhR and ethanol via ROS production, to favor cell death in the context of prior steatosis.
Assuntos
Benzo(a)pireno/toxicidade , Citocromo P-450 CYP1A1/genética , Etanol/toxicidade , Ácidos Graxos/farmacologia , Hepatócitos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Compostos Azo/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzoatos/farmacologia , Linhagem Celular Tumoral , Quimera , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Imidazóis/farmacologia , Metaloporfirinas/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Necrose/induzido quimicamente , Necrose/genética , Necrose/metabolismo , Óxido Nítrico/agonistas , Pirazóis/farmacologia , Ratos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Superóxidos/agonistas , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismoRESUMO
Exposure to environmental polycyclic aromatic hydrocarbons (PAHs), such as benzo(a)pyrene (B(a)P), has been linked to several health-threatening risks. PAHs were also shown to hinder adrenergic receptor (ADR) responses. As we previously demonstrated that B(a)P can directly interact with the ß2ADR, we investigated here whether B(a)P could decrease ß2ADR responsiveness by triggering receptor desensitization phenomena. We firstly showed that exposure to B(a)P reduced ß2ADR-mediated epinephrine-induced induction of NR4A gene mRNAs and of intracellular cAMP. Analysis of ß2ADR protein expression demonstrated that B(a)P rapidly decreased membrane expression of ß2ADR with a subsequent degradation of receptor protein. B(a)P exposure concomitantly rapidly increased the ß2ADR mRNA levels. The use of the ß-blockers, propranolol and ICI 118.551, demonstrated the involvement of ß2ADR itself in this increase. However, sustained exposure to B(a)P induced a diminution of ß2ADR mRNA steady-state as a result of the acceleration of its degradation. Together, these results show that, beside the well-known activation of the aryl hydrocarbon receptor, PAH deleterious effects may involve the dysfunction of adrenergic responses through, in part, the desensitization of ß2ADR. This may be taken in consideration when ß2-agonists/antagonists are administered in patients exposed to important concentrations of PAHs, e.g. in cigarette smokers.
Assuntos
Benzo(a)pireno/farmacologia , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Epinefrina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteólise , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Adrenérgicos beta 2/genéticaRESUMO
Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (B[a]P), are widely distributed environmental contaminants exerting toxic effects such as genotoxicity and carcinogenicity, mainly associated with aryl hydrocarbon receptor (AhR) activation and the subsequent induction of cytochromes P-450 (CYP) 1-metabolizing enzymes. We previously reported an up-regulation of AhR expression and activity in primary cultures of human T lymphocyte by a physiological activation. Despite the suggested link between exposure to PAHs and the risk of lymphoma, the potential of activated human T lymphocytes to metabolize AhR exogenous ligands such as B[a]P and produce DNA damage has not been investigated. In the present study, we characterized the genotoxic response of primary activated T lymphocytes to B[a]P. We demonstrated that, following T lymphocyte activation, B[a]P treatment triggers a marked increase in CYP1 expression and activity generating, upon metabolic activation, DNA adducts and double-strand breaks (DSBs) after a 48-h treatment. At this time point, B[a]P also induces a DNA damage response with ataxia telangiectasia mutated kinase activation, thus producing a p53-dependent response and T lymphocyte survival. B[a]P activates DSB repair by mobilizing homologous recombination machinery but also induces gene mutations in activated human T lymphocytes which could consequently drive a cancer process. In conclusion, primary cultures of activated human T lymphocytes represent a good model for studying genotoxic effects of environmental contaminants such as PAHs, and predicting human health issues.
Assuntos
Benzo(a)pireno/toxicidade , Dano ao DNA/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Células Cultivadas , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Mutagênese/fisiologia , Testes de Mutagenicidade/métodos , Linfócitos T/metabolismoRESUMO
The ubiquitous environmental pollutants polycyclic aromatic hydrocarbons are responsible for important carcinogenic and apoptotic effects, whose mechanisms are still poorly understood, owing to the multiplicity of possible cellular targets. Among these mechanisms, alterations of ionic homeostasis have been suggested. In this work, the effects of benzo(a)pyrene [B(a)P] on pHi were tested in the rat liver F258 epithelial cell line, using the fluoroprobe carboxy-SNARF-1. After a 48-h treatment, B(a)P (50 nM) induced an alkalinization, followed by an acidification after 72 h and the development of apoptosis. Determinations of pH(i) recovery following an acid load showed an increased acid efflux at 48 h. Cariporide inhibited both the early alkalinization and the increased acid efflux, thus suggesting the involvement of Na+/H+ exchanger 1 (NHE1). Besides, alpha-naphtoflavone (alpha-NF), an inhibitor of CYP1A1-mediated B(a)P metabolism, prevented all pH(i) changes, and NHE1 activation was blocked by the antioxidant thiourea, which inhibited CYP1A1 metabolism-dependent H2O2 production. Regarding B(a)P-induced apoptosis, this was prevented by alpha-NF and bongkrekic acid, an inhibitor of mitochondria-dependent apoptosis. Interestingly, apoptosis was significantly reduced by cariporide. Taken together, our results indicate that B(a)P, via H2O2 produced by CYP1A1-dependent metabolism, induces an early activation of NHE1, resulting in alkalinization; this appears to play a significant role in mitochondria-dependent B(a)P-induced apoptosis.
Assuntos
Benzo(a)pireno/toxicidade , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzo(a)pireno/farmacologia , Inibidores de Caspase , Caspases/metabolismo , Linhagem Celular , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Guanidinas/farmacologia , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Fígado/citologia , Fígado/efeitos dos fármacos , Modelos Biológicos , Ratos , Sulfonas/farmacologia , Tioureia/farmacologiaRESUMO
Recent studies support the view that in addition to its effect on both phase I and phase II xenobiotic metabolizing enzymes, the synthetic chemopreventive agent oltipraz also increases the nucleotide excision repair (NER) which represents the major pathway of elimination of chemical carcinogen DNA adducts. Since most carcinogens are activated in the liver, we investigated the influence of oltipraz on NER activity of this target tissue by using two different approaches. First, we employed an assay based on the measurement of DNA repair in cisplatin-damaged plasmid DNA incubated in the presence of cell-free extracts prepared from either rat liver or human hepatoma HepG2 cells treated by oltipraz. Secondly, we analyzed the removal of aflatoxin B(1)-derived DNA adducts formed in primary human hepatocytes exposed to oltipraz after treatment with this mycotoxin. Whatever the strategy used, NER activity was not altered in liver cells. These data demonstrated that liver cells actively repair bulky DNA adducts by NER and that oltipraz does not influence their NER activity neither in vivo nor in vitro, consequently strongly suggesting that the chemopreventive agent oltipraz is acting before the initiation step of cancer development.
Assuntos
Reparo do DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pirazinas/farmacologia , Aflatoxina B1/farmacologia , Animais , DNA/metabolismo , Adutos de DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/fisiologia , Masculino , Ratos , Ratos Wistar , Inibidores da Transcriptase Reversa/farmacologia , Tionas , TiofenosRESUMO
We examined the effects of amiloride derivatives, especially 5-(N-ethyl-N-isopropyl)amiloride (EIPA), on the activity of cytochrome P450 (CYP) 1 isoforms, known to metabolize carcinogenic polycyclic aromatic hydrocarbons (PAHs), such as benzo(a)pyrene (BP), into mutagenic metabolites and whose cellular expression can be induced through interaction of PAHs with the arylhydrocarbon receptor. EIPA was found to cause a potent and dose-dependent inhibition of CYP1-related ethoxyresorufine O-deethylase (EROD) activity in both liver cells and microsomes. It also markedly reduced activity of human recombinant CYP1A1 enzyme through a competitive mechanism; activities of other human CYP1 isoforms, i.e. CYP1A2 and CYP1B1, were also decreased. However, EIPA did not affect BP-mediated induction of CYP1A1 mRNA and protein levels in rat liver cells, likely indicating that EIPA does not block activation of the arylhydrocarbon receptor by PAHs. Inhibition of CYP1 activity by EIPA was associated with a decreased metabolism of BP, a reduced formation of BP-derived DNA adducts and a diminished BP-induced apoptosis in liver cells. The present data suggest that amiloride derivatives, such as EIPA, may be useful for preventing toxicity of chemical carcinogens, such as PAHs, through inhibition of CYP1 enzyme activity.
Assuntos
Amilorida/análogos & derivados , Amilorida/farmacologia , Benzo(a)pireno/farmacologia , Citocromo P-450 CYP1A1/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Animais , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1 , Expressão Gênica/efeitos dos fármacos , Isoenzimas/metabolismo , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Acute cytotoxic effects of 2-acetylaminofluorene (AAF), a powerful chemical carcinogen, were studied in cultured rat liver epithelial F258 cells. Acute treatment of these cells by AAF resulted in inhibition of cell proliferation, through an arrest in G0/G1 phase of the cell cycle, and a loss of cell viability. By contrast, AAF failed to trigger apoptosis as demonstrated by flow cytometric analysis of hypoploid sub-G1 cells. Cytochrome P4501A1 (CYP1A1), a drug metabolizing enzyme thought to play a major role in biotransformation of AAF, was induced in AAF-treated F258 cells as assessed by Northern blotting. AAF cytotoxic effects were however not blocked by the CYP1A1 inhibitor alpha-naphtoflavone, thus suggesting that they did not require CYP1A1 activity. They were also not prevented by the antioxidant N-acetylcysteine, making unlikely a major contribution of AAF-related reactive oxygen species. These data therefore indicate that AAF can exert acute cellular toxicity, including inhibition of cell growth and cell death, in rat liver epithelial cells without triggering an apoptotic process. Such an acute toxicity may contribute to the well-known promoting effects of AAF.