RESUMO
Most of the described species in kingdom Fungi are contained in two phyla, the Ascomycota and the Basidiomycota (subkingdom Dikarya). As a result, our understanding of the biology of the kingdom is heavily influenced by traits observed in Dikarya, such as aerial spore dispersal and life cycles dominated by mitosis of haploid nuclei. We now appreciate that Fungi comprises numerous phylum-level lineages in addition to those of Dikarya, but the phylogeny and genetic characteristics of most of these lineages are poorly understood due to limited genome sampling. Here, we addressed major evolutionary trends in the non-Dikarya fungi by phylogenomic analysis of 69 newly generated draft genome sequences of the zoosporic (flagellated) lineages of true fungi. Our phylogeny indicated five lineages of zoosporic fungi and placed Blastocladiomycota, which has an alternation of haploid and diploid generations, as branching closer to the Dikarya than to the Chytridiomyceta. Our estimates of heterozygosity based on genome sequence data indicate that the zoosporic lineages plus the Zoopagomycota are frequently characterized by diploid-dominant life cycles. We mapped additional traits, such as ancestral cell-cycle regulators, cell-membrane- and cell-wall-associated genes, and the use of the amino acid selenocysteine on the phylogeny and found that these ancestral traits that are shared with Metazoa have been subject to extensive parallel loss across zoosporic lineages. Together, our results indicate a gradual transition in the genetics and cell biology of fungi from their ancestor and caution against assuming that traits measured in Dikarya are typical of other fungal lineages.
Assuntos
Fungos , Estágios do Ciclo de Vida , Filogenia , Diploide , Fungos/classificação , Fungos/genética , Genoma Fúngico/genéticaRESUMO
We aimed to identify genomic traits of transitions to ectomycorrhizal ecology within the Boletales by comparing the genomes of 21 symbiotrophic species with their saprotrophic brown-rot relatives. Gene duplication rate is constant along the backbone of Boletales phylogeny with large loss events in several lineages, while gene family expansion sharply increased in the late Miocene, mostly in the Boletaceae. Ectomycorrhizal Boletales have a reduced set of plant cell-wall-degrading enzymes (PCWDEs) compared with their brown-rot relatives. However, the various lineages retain distinct sets of PCWDEs, suggesting that, over their evolutionary history, symbiotic Boletales have become functionally diverse. A smaller PCWDE repertoire was found in Sclerodermatineae. The gene repertoire of several lignocellulose oxidoreductases (e.g. laccases) is similar in brown-rot and ectomycorrhizal species, suggesting that symbiotic Boletales are capable of mild lignocellulose decomposition. Transposable element (TE) proliferation contributed to the higher evolutionary rate of genes encoding effector-like small secreted proteins, proteases, and lipases. On the other hand, we showed that the loss of secreted CAZymes was not related to TE activity but to DNA decay. This study provides novel insights on our understanding of the mechanisms influencing the evolutionary diversification of symbiotic boletes.
Assuntos
Basidiomycota , Micorrizas , Basidiomycota/genética , Evolução Biológica , Micorrizas/genética , Filogenia , Simbiose/genéticaRESUMO
The genome of entomopathogenic fungus Tolypocladium inflatum Gams encodes 43 putative biosynthetic gene clusters for specialized metabolites, although genotype-phenotype linkages have been reported only for the cyclosporins and fumonisins. T. inflatum was cultured in defined minimal media, supplemented with or without one of nine different amino acids. Acquisition of LC-MS/MS data for molecular networking and manual analysis facilitated annotation of putative known and unknown metabolites. These data led us to target a family of peptaibols and guided the isolation and purification of tolypocladamide H (1), which showed modest antibacterial activity and toxicity to mammalian cells at micromolar concentrations. HRMS/MS, NMR, and advanced Marfey's analysis were used to assign the structure of 1 as a peptaibol containing 4-[(E)-2-butenyl]-4-methyl-l-threonine (Bmt), a hallmark structural motif of the cyclosporins. LC-MS detection of homologous tolypocladamide metabolites and phylogenomic analyses of peptaibol biosynthetic genes in other cultured Tolypocladium species allowed assignment of a putative tolypocladamide nonribosomal peptide synthetase gene.
Assuntos
Ciclosporinas , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Mamíferos , Estrutura Molecular , Família Multigênica , PeptaibolsRESUMO
For many plant-pathogenic or endophytic fungi, production of mycotoxins, which are toxic to humans, may present a fitness gain. However, associations between mycotoxin production and plant pathogenicity or virulence is inconsistent and difficult due to the complexity of these host-pathogen interactions and the influences of environmental and insect factors. Aflatoxin receives a lot of attention due to its potent toxicity and carcinogenicity but the connection between aflatoxin production and pathogenicity is complicated by the pathogenic ability and prevalence of nonaflatoxigenic isolates in crops. Other toxins directly aid fungi in planta, trichothecenes are important virulence factors, and ergot alkaloids limit herbivory and fungal consumption due to insect toxicity. We review a panel discussion at the American Phytopathological Society's Plant Health 2021 conference, which gathered diverse experts representing different research sectors, career stages, ethnicities, and genders to discuss the diverse roles of mycotoxins in the lifestyles of filamentous fungi of the families Clavicipitaceae, Trichocomaceae (Eurotiales), and Nectriaceae (Hypocreales).
Assuntos
Aflatoxinas , Alcaloides de Claviceps , Micotoxinas , Tricotecenos , Ecossistema , Feminino , Fungos , Humanos , Masculino , Micotoxinas/toxicidade , Doenças das Plantas , Fatores de VirulênciaRESUMO
Ecological diversity in fungi is largely defined by metabolic traits, including the ability to produce secondary or "specialized" metabolites (SMs) that mediate interactions with other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation in BGC composition reflects the diversity of their SM products. Recent studies have documented surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is known about how this population-level variation is inherited across macroevolutionary timescales. Here, we applied a novel linkage-based algorithm to reveal previously unexplored dimensions of diversity in BGC composition, distribution, and repertoire across 101 species of Dothideomycetes, which are considered the most phylogenetically diverse class of fungi and known to produce many SMs. We predicted both complementary and overlapping sets of clustered genes compared with existing methods and identified novel gene pairs that associate with known secondary metabolite genes. We found that variation among sets of BGCs in individual genomes is due to nonoverlapping BGC combinations and that several BGCs have biased ecological distributions, consistent with niche-specific selection. We observed that total BGC diversity scales linearly with increasing repertoire size, suggesting that secondary metabolites have little structural redundancy in individual fungi. We project that there is substantial unsampled BGC diversity across specific families of Dothideomycetes, which will provide a roadmap for future sampling efforts. Our approach and findings lend new insight into how BGC diversity is generated and maintained across an entire fungal taxonomic class.
Assuntos
Ascomicetos/metabolismo , Vias Biossintéticas/genética , Ascomicetos/genética , Redes Reguladoras de Genes , Melaninas/metabolismo , Anotação de Sequência Molecular , Família Multigênica , Naftóis/metabolismoRESUMO
Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.
Assuntos
Eucalyptus/genética , Genoma de Planta , Eucalyptus/classificação , Evolução Molecular , Variação Genética , Endogamia , FilogeniaRESUMO
BACKGROUND: Genes involved in production of secondary metabolites (SMs) in fungi are exceptionally diverse. Even strains of the same species may exhibit differences in metabolite production, a finding that has important implications for drug discovery. Unlike in other eukaryotes, genes producing SMs are often clustered and co-expressed in fungal genomes, but the genetic mechanisms involved in the creation and maintenance of these secondary metabolite biosynthetic gene clusters (SMBGCs) remains poorly understood. RESULTS: In order to address the role of genome architecture and chromosome scale structural variation in generating diversity of SMBGCs, we generated chromosome scale assemblies of six geographically diverse isolates of the insect pathogenic fungus Tolypocladium inflatum, producer of the multi-billion dollar lifesaving immunosuppressant drug cyclosporin, and utilized a Hi-C chromosome conformation capture approach to address the role of genome architecture and structural variation in generating intraspecific diversity in SMBGCs. Our results demonstrate that the exchange of DNA between heterologous chromosomes plays an important role in generating novelty in SMBGCs in fungi. In particular, we demonstrate movement of a polyketide synthase (PKS) and several adjacent genes by translocation to a new chromosome and genomic context, potentially generating a novel PKS cluster. We also provide evidence for inter-chromosomal recombination between nonribosomal peptide synthetases located within subtelomeres and uncover a polymorphic cluster present in only two strains that is closely related to the cluster responsible for biosynthesis of the mycotoxin aflatoxin (AF), a highly carcinogenic compound that is a major public health concern worldwide. In contrast, the cyclosporin cluster, located internally on chromosomes, was conserved across strains, suggesting selective maintenance of this important virulence factor for infection of insects. CONCLUSIONS: This research places the evolution of SMBGCs within the context of whole genome evolution and suggests a role for recombination between chromosomes in generating novel SMBGCs in the medicinal fungus Tolypocladium inflatum.
Assuntos
Cromossomos Fúngicos/genética , Ciclosporina/metabolismo , Rearranjo Gênico , Variação Genética , Hypocreales/genética , Hypocreales/metabolismo , Metabolismo Secundário/genética , Duplicação Cromossômica , Evolução Molecular , Genoma Fúngico/genética , Família Multigênica/genética , Recombinação Genética , Especificidade da EspécieRESUMO
Ustilaginomycotina is home to a broad array of fungi including important plant pathogens collectively called smut fungi. Smuts are biotrophs that produce characteristic perennating propagules called teliospores, one of which, Ustilago maydis, is a model genetic organism. Broad exploration of smut biology has been hampered by limited phylogenetic resolution of Ustilaginiomycotina as well as an overall lack of genomic data for members of this subphylum. In this study, we sequenced eight Ustilaginomycotina genomes from previously unrepresented lineages, deciphered ordinal-level phylogenetic relationships for the subphylum, and performed comparative analyses. Unlike other Basidiomycota subphyla, all sampled Ustilaginomycotina genomes are relatively small and compact. Ancestral state reconstruction analyses indicate that teliospore formation was present at the origin of the subphylum. Divergence time estimation dates the divergence of most extant smut fungi after that of grasses (Poaceae). However, we found limited conservation of well-characterized genes related to smut pathogenesis from U. maydis, indicating dissimilar pathogenic mechanisms exist across other smut lineages. The genomes of Malasseziomycetes are highly diverged from the other sampled Ustilaginomycotina, likely due to their unique history as mammal-associated lipophilic yeasts. Despite extensive genomic data, the phylogenetic placement of this class remains ambiguous. Although the sampled Ustilaginomycotina members lack many core enzymes for plant cell wall decomposition and starch catabolism, we identified several novel carbohydrate active enzymes potentially related to pectin breakdown. Finally, â¼50% of Ustilaginomycotina species-specific genes are present in previously undersampled and rare lineages, highlighting the importance of exploring fungal diversity as a resource for novel gene discovery.
Assuntos
Interações Hospedeiro-Patógeno/genética , Filogenia , Ustilaginales/genética , Genoma Fúngico , Doenças das Plantas , Ustilaginales/classificação , Ustilaginales/enzimologia , Ustilaginales/patogenicidade , Sequenciamento Completo do GenomaRESUMO
Endogonales (Mucoromycotina), composed of Endogonaceae and Densosporaceae, is the only known non-Dikarya order with ectomycorrhizal members. They also form mycorrhizal-like association with some nonspermatophyte plants. It has been recently proposed that Endogonales were among the earliest mycorrhizal partners with land plants. It remains unknown whether Endogonales possess genomes with mycorrhizal-lifestyle signatures and whether Endogonales originated around the same time as land plants did. We sampled sporocarp tissue from four Endogonaceae collections and performed shotgun genome sequencing. After binning the metagenome data, we assembled and annotated the Endogonaceae genomes. We performed comparative analysis on plant-cell-wall-degrading enzymes (PCWDEs) and small secreted proteins (SSPs). We inferred phylogenetic placement of Endogonaceae and estimated the ages of Endogonaceae and Endogonales with expanded taxon sampling. Endogonaceae have large genomes with high repeat content, low diversity of PCWDEs, but without elevated SSP/secretome ratios. Dating analysis estimated that Endogonaceae originated in the Permian-Triassic boundary and Endogonales originated in the mid-late Silurian. Mycoplasma-related endobacterium sequences were identified in three Endogonaceae genomes. Endogonaceae genomes possess typical signatures of mycorrhizal lifestyle. The early origin of Endogonales suggests that the mycorrhizal association between Endogonales and plants might have played an important role during the colonization of land by plants.
Assuntos
Evolução Biológica , Mucorales/genética , Micorrizas/fisiologia , Filogenia , Genoma Fúngico , Metagenômica , Microbiota/genética , Anotação de Sequência Molecular , Mycoplasma/genética , Sequências Repetitivas de Ácido Nucleico/genéticaRESUMO
Previous genome-scale phylogenetic analyses of Fungi have under sampled taxa from Zoopagales; this order contains many predacious or parasitic genera, and most have never been grown in pure culture. We sequenced the genomes of 4 zoopagalean taxa that are predators of amoebae, nematodes, or rotifers and the genome of one taxon that is a parasite of amoebae using single cell sequencing methods with whole genome amplification. Each genome was a metagenome, which was assembled and binned using multiple techniques to identify the target genomes. We inferred phylogenies with both super matrix and coalescent approaches using 192 conserved proteins mined from the target genomes and performed ancestral state reconstructions to determine the ancestral trophic lifestyle of the clade. Our results indicate that Zoopagales is monophyletic. Ancestral state reconstructions provide moderate support for mycoparasitism being the ancestral state of the clade.
Assuntos
Fungos/classificação , Fungos/genética , Genoma Fúngico , Filogenia , Animais , Sequência de Bases , Proteínas Fúngicas/genética , Biblioteca Gênica , Genômica , Funções Verossimilhança , Simbiose/genéticaRESUMO
The environmental accumulation of polycyclic aromatic hydrocarbons (PAHs) is of great concern due to potential carcinogenic and mutagenic risks, as well as their resistance to remediation. While many fungi have been reported to break down PAHs in environments, the details of gene-based metabolic pathways are not yet comprehensively understood. Specifically, the genome-scale transcriptional responses of fungal PAH degradation have rarely been reported. In this study, we report the genomic and transcriptomic basis of PAH bioremediation by a potent fungal degrader, Dentipellis sp. KUC8613. The genome size of this fungus was 36.71 Mbp long encoding 14,320 putative protein-coding genes. The strain efficiently removed more than 90% of 100 mg/l concentration of PAHs within 10 days. The genomic and transcriptomic analysis of this white rot fungus highlights that the strain primarily utilized non-ligninolytic enzymes to remove various PAHs, rather than typical ligninolytic enzymes known for playing important roles in PAH degradation. PAH removal by non-ligninolytic enzymes was initiated by both different PAH-specific and common upregulation of P450s, followed by downstream PAH-transforming enzymes such as epoxide hydrolases, dehydrogenases, FAD-dependent monooxygenases, dioxygenases, and glycosyl- or glutathione transferases. Among the various PAHs, phenanthrene induced a more dynamic transcriptomic response possibly due to its greater cytotoxicity, leading to highly upregulated genes involved in the translocation of PAHs, a defense system against reactive oxygen species, and ATP synthesis. Our genomic and transcriptomic data provide a foundation of understanding regarding the mycoremediation of PAHs and the application of this strain for polluted environments.
Assuntos
Basidiomycota/genética , Basidiomycota/metabolismo , Perfilação da Expressão Gênica , Genômica , Redes e Vias Metabólicas/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , BiotransformaçãoRESUMO
Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes.
Assuntos
Genômica , Micorrizas/genética , Plantas/microbiologia , Simbiose/genética , Transcriptoma/genética , Sequência Conservada/genética , Fungos/classificação , Fungos/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Filogenia , Metabolismo Secundário/genética , Especificidade por Substrato , Regulação para Cima/genéticaRESUMO
Soil depth partitioning is thought to promote the diversity of ectomycorrhizal (EM) fungal communities, but little is known about whether it is controlled by abiotic or biotic factors. In three bioassay experiments, we tested the role of vertical soil heterogeneity in determining the distributions and competitive outcomes of the EM sister species Rhizopogon vinicolor and Rhizopogon vesiculosus. We planted Pseudotsuga menziesii seedlings into soils that were either a homogenized mix of upper and lower depths or vertically stratified combinations mimicking natural field conditions. We found that both species colonized the upper or lower soil depths in the absence of competition, suggesting that their distributions were not limited by abiotic edaphic factors. In competition within homogeneous soils, R. vesiculosus completely excluded colonization by R. vinicolor, but R. vinicolor was able to persist when soils were stratified. The amount of colonization by R. vinicolor in the stratified soils was also significantly correlated with the number of multilocus genotypes present. Taken together, our findings suggest that the differential vertical distributions of R. vinicolor and R. vesiculosus in natural settings are probably attributable to competition rather than edaphic specialization, but that soil heterogeneity may play a key role in promoting EM fungal diversity.
Assuntos
Comportamento Competitivo , Ecossistema , Micorrizas/fisiologia , Biomassa , Genótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Pseudotsuga/microbiologia , Plântula/genética , Plântula/fisiologia , Solo , Especificidade da EspécieRESUMO
The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role of secondary metabolite gene clusters and their metabolites in fungal biology.
Assuntos
Besouros/microbiologia , Ciclosporina/metabolismo , Hypocreales/genética , Complexos Multienzimáticos/genética , Peptídeo Sintases/genética , Animais , Evolução Molecular , Transferência Genética Horizontal , Genoma , Hypocreales/enzimologia , Complexos Multienzimáticos/metabolismo , Família Multigênica , Peptídeo Sintases/metabolismo , Filogenia , Análise de Sequência de RNARESUMO
Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few genes did not support the monophyly of the phylum, however, and the phylum was subsequently abandoned. Here we present phylogenetic analyses of a genome-scale data set for 46 taxa, including 25 zygomycetes and 192 proteins, and we demonstrate that zygomycetes comprise two major clades that form a paraphyletic grade. A formal phylogenetic classification is proposed herein and includes two phyla, six subphyla, four classes and 16 orders. On the basis of these results, the phyla Mucoromycota and Zoopagomycota are circumscribed. Zoopagomycota comprises Entomophtoromycotina, Kickxellomycotina and Zoopagomycotina; it constitutes the earliest diverging lineage of zygomycetes and contains species that are primarily parasites and pathogens of small animals (e.g. amoeba, insects, etc.) and other fungi, i.e. mycoparasites. Mucoromycota comprises Glomeromycotina, Mortierellomycotina, and Mucoromycotina and is sister to Dikarya. It is the more derived clade of zygomycetes and mainly consists of mycorrhizal fungi, root endophytes, and decomposers of plant material. Evolution of trophic modes, morphology, and analysis of genome-scale data are discussed.
Assuntos
Fungos/classificação , Fungos/genética , Genoma Fúngico , FilogeniaRESUMO
BACKGROUND: Two major mycoparasitic lineages, the family Hypocreaceae and the genus Tolypocladium, exist within the fungal order, Hypocreales. Peptaibiotics are a group of secondary metabolites almost exclusively described from Trichoderma species of Hypocreaceae. Peptaibiotics are produced by nonribosomal peptide synthetases (NRPSs) and have antibiotic and antifungal activities. Tolypocladium species are mainly truffle parasites, but a few species are insect pathogens. RESULTS: The draft genome sequence of the truffle parasite Tolypocladium ophioglossoides was generated and numerous secondary metabolite clusters were discovered, many of which have no known putative product. However, three large peptaibiotic gene clusters were identified using phylogenetic analyses. Peptaibiotic genes are absent from the predominantly plant and insect pathogenic lineages of Hypocreales, and are therefore exclusive to the largely mycoparasitic lineages. Using NRPS adenylation domain phylogenies and reconciliation of the domain tree with the organismal phylogeny, it is demonstrated that the distribution of these domains is likely not the product of horizontal gene transfer between mycoparasitic lineages, but represents independent losses in insect pathogenic lineages. Peptaibiotic genes are less conserved between species of Tolypocladium and are the product of complex patterns of lineage sorting and module duplication. In contrast, these genes are more conserved within the genus Trichoderma and consistent with diversification through speciation. CONCLUSIONS: Peptaibiotic NRPS genes are restricted to mycoparasitic lineages of Hypocreales, based on current sampling. Phylogenomics and comparative genomics can provide insights into the evolution of secondary metabolite genes, their distribution across a broader range of taxa, and their possible function related to host specificity.
Assuntos
Antifúngicos/metabolismo , Proteínas Fúngicas/genética , Genoma Fúngico , Hypocreales/genética , Animais , Evolução Molecular , Proteínas Fúngicas/metabolismo , Hypocreales/classificação , Hypocreales/metabolismo , Insetos/microbiologia , Família Multigênica , Filogenia , Plantas/microbiologia , Metabolismo SecundárioRESUMO
Many obligate symbiotic fungi are difficult to maintain in culture, and there is a growing need for alternative approaches to obtaining tissue and subsequent genomic assemblies from such species. In this study, the genome of Elaphomyces granulatus was sequenced from sporocarp tissue. The genome assembly remains on many contigs, but gene space is estimated to be mostly complete. Phylogenetic analyses revealed that the Elaphomyces lineage is most closely related to Talaromyces and Trichocomaceae s.s. The genome of E. granulatus is reduced in carbohydrate-active enzymes, despite a large expansion in genome size, both of which are consistent with what is seen in Tuber melanosporum, the other sequenced ectomycorrhizal ascomycete. A large number of transposable elements are predicted in the E. granulatus genome, especially Gypsy-like long terminal repeats, and there has also been an expansion in helicases. The metagenome is a complex community dominated by bacteria in Bradyrhizobiaceae, and there is evidence to suggest that the community may be reduced in functional capacity as estimated by KEGG pathways. Through the sequencing of sporocarp tissue, this study has provided insights into Elaphomyces phylogenetics, genomics, metagenomics and the evolution of the ectomycorrhizal association.
Assuntos
Bradyrhizobiaceae/genética , DNA Fúngico/genética , Eurotiales/genética , Carpóforos/genética , Genoma Fúngico/genética , Metagenoma , Sequência de Bases , Bradyrhizobiaceae/classificação , Elementos de DNA Transponíveis/genética , Eurotiales/classificação , Metagenômica , Microbiota/genética , Micorrizas/genética , Filogenia , Análise de Sequência de DNA , Talaromyces/genéticaRESUMO
The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.
Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Cromossomos Fúngicos/genética , Evolução Molecular , Genes Fúngicos/fisiologia , Doenças das Plantas/genética , Ascomicetos/metabolismo , Cromossomos Fúngicos/metabolismo , Elementos de DNA Transponíveis/fisiologia , Estresse Oxidativo/genética , Doenças das Plantas/microbiologia , Mutação PuntualRESUMO
Mixia osmundae (Basidiomycota, Pucciniomycotina) represents a monotypic class containing an unusual fern pathogen with incompletely understood biology. We sequenced and analyzed the genome of M. osmundae, focusing on genes that may provide some insight into its mode of pathogenicity and reproductive biology. Mixia osmundae has the smallest plant pathogenic basidiomycete genome sequenced to date, at 13.6 Mb, with very few repeats, high gene density, and relatively few significant gene family gains. The genome shows that the yeast state of M. osmundae is haploid and the lack of segregation of mating genes suggests that the spores produced on Osmunda spp. fronds are probably asexual. However, our finding of a complete complement of mating and meiosis genes suggests the capacity to undergo sexual reproduction. Analyses of carbohydrate active enzymes suggest that this fungus is a biotroph with the ability to break down several plant cell wall components. Analyses of publicly available sequence data show that other Mixia members may exist on other plant hosts and with a broader distribution than previously known.
Assuntos
Basidiomycota/genética , DNA Fúngico/análise , Gleiquênias/microbiologia , Genes Fúngicos , Genoma Fúngico , Doenças das Plantas/microbiologia , Basidiomycota/patogenicidade , Metabolismo dos Carboidratos , Parede Celular , Haploidia , Meiose , Reprodução , Reprodução Assexuada , Esporos Fúngicos , LevedurasRESUMO
Global declines in biodiversity are altering disease dynamics in complex and multifaceted ways. Changes in biodiversity can have several outcomes on disease risk, including dilution and amplification effects, both of which can have a profound influence on the effects of disease in a community. The dilution effect occurs when biodiversity and disease risk are inversely related, whereas the amplification effect is a positive relationship between biodiversity and disease risk. We tested these effects with an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd), which is responsible for catastrophic amphibian population declines and extinctions worldwide. Despite the rapid and continued spread of Bd, the influence of host diversity on Bd dynamics remains unknown. We experimentally manipulated host diversity and density in the presence of Bd and found a dilution effect where increased species richness reduced disease risk, even when accounting for changes in density. These results demonstrate the general importance of incorporating community structure into studies of disease dynamics and have implications for the effects of Bd in ecosystems that differ in biodiversity.