Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(15): 6549-6555, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34288695

RESUMO

Color centers in hexagonal boron nitride (hBN) are becoming an increasingly important building block for quantum photonic applications. Herein, we demonstrate the efficient coupling of recently discovered spin defects in hBN to purposely designed bullseye cavities. We show that boron vacancy spin defects couple to the monolithic hBN cavity system and exhibit a 6.5-fold enhancement. In addition, by comparative finite-difference time-domain modeling, we shed light on the emission dipole orientation, which has not been experimentally demonstrated at this point. Beyond that, the coupled spin system exhibits an enhanced contrast in optically detected magnetic resonance readout and improved signal-to-noise ratio. Thus, our experimental results, supported by simulations, constitute a first step toward integration of hBN spin defects with photonic resonators for a scalable spin-photon interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA