Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nanotechnology ; 28(48): 485601, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29105645

RESUMO

GaN microrods are used as a basis for subsequent InGaN quantum well (QW) and quantum dot deposition by metal-organic vapor phase epitaxy. The coverage of the shell along the sidewall of rods is dependent on the rod growth time and a complete coverage is obtained for shorter rod growth times. Transmission electron microscopy measurements are performed to reveal the structural properties of the InGaN layer on the sidewall facet and on the top facet. The presence of layers in the microrod and on the microrod surface will be discussed with respect to GaN and InGaN growth. A detailed model will be presented explaining the formation of multiple SiN layers and the partial and full coverage of the shell around the core. Cathodoluminescence measurements are performed to analyze the InGaN emission properties along the microrod and to study the microresonator properties of such hexagonal core-shell structures. High quality factor whispering gallery modes with [Formula: see text] are reported for the first time in a GaN microrod/InGaN non-polar QW core-shell geometry. The GaN/InGaN core-shell microrods are expected to be promising building blocks for low-threshold laser diodes and ultra-sensitive optical sensors.

3.
Nano Lett ; 16(6): 3415-25, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27187840

RESUMO

Vertically aligned hexagonal InN nanorods were grown mask-free by conventional metal-organic vapor phase epitaxy without any foreign catalyst. The In droplets on top of the nanorods indicate a self-catalytic vapor-liquid-solid growth mode. A systematic study on important growth parameters has been carried out for the optimization of nanorod morphology. The nanorod N-polarity, induced by high temperature nitridation of the sapphire substrate, is necessary to achieve vertical growth. Hydrogen, usually inapplicable during InN growth due to formation of metallic indium, and silane are needed to enhance the aspect ratio and to reduce parasitic deposition beside the nanorods on the sapphire surface. The results reveal many similarities between InN and GaN nanorod growth showing that the process despite the large difference in growth temperature is similar. Transmission electron microscopy, spatially resolved energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been performed to analyze the structural properties. Spatially resolved cathodoluminescence investigations are carried out to verify the optical activity of the InN nanorods. The InN nanorods are expected to be the material of choice for high-efficiency hot carrier solar cells.

4.
Nanotechnology ; 25(50): 505301, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25427225

RESUMO

In order to realize a versatile high throughput production of micro-optical elements, UV-curable polymer composites containing titanium dioxide nanoparticles were prepared and characterized. The composites are based on an industrial prototype epoxy polymer. Titanium dioxide nanoparticles smaller than 10 nm were synthesized by the nonaqueous sol method and in situ sterically stabilized by three different organic surfactants. The composites exhibit high transparency. Distinct alteration of optical transmission properties for visible light and near IR wavelength range could be avoided by adaption of the stabilizing organic surfactant. Most importantly, the refractive index (RI) of the composites that depends on the fraction of incorporated inorganic nanoparticles could be directly tuned. E.g. the RI at a wavelength of 635 nm of a composite containing 23 wt% titanium dioxide nanoparticles is increased to 1.626, with respect to a value of 1.542 for the pure polymer. Furthermore, it could be demonstrated that the prepared inorganic-organic nanocomposites are well suited for the direct fabrication of low-cost micro-optical elements by nanoimprint lithography. A low response of the optical composite properties to temperature treatment up to 220 °C with a shrinkage of only about 4% ensures its application for integrated micro-optical elements in industrial production.

5.
J Phys Chem Lett ; 15(17): 4711-4720, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38657124

RESUMO

We present a comprehensive scale-bridging characterization approach for supported catalytically active liquid metal solutions (SCALMS) which combines lab-based X-ray microscopy, nano X-ray computed tomography (nano-CT), and correlative analytical transmission electron microscopy. SCALMS catalysts consist of low-melting alloy particles and have demonstrated high catalytic activity, selectivity, and long-term stability in propane dehydrogenation (PDH). We established an identical-location nano-CT workflow which allows us to reveal site-specific changes of Ga-Pt SCALMS before and after PDH. These observations are complemented by analytical transmission electron microscopy investigations providing information on the structure, chemical composition, and phase distribution of individual SCALMS particles. Key findings of this combined microscopic approach include (i) structural evolution of the SCALMS particles' GaOx shell, (ii) Pt segregation toward the oxide shell leading to the formation of Ga-Pt intermetallic phases, and (iii) cracking of the oxide shell accompanied by the release of liquid Ga-Pt toward the porous support.

6.
Nanoscale Adv ; 5(5): 1450-1464, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36866254

RESUMO

Metallic alloy nanoparticles (NPs) exhibit interesting optical, electrical and catalytic properties, dependent on their size, shape and composition. In particular, silver-gold alloy NPs are widely applied as model systems to better understand the syntheses and formation (kinetics) of alloy NPs, as the two elements are fully miscible. Our study targets product design via environmentally friendly synthesis conditions. We use dextran as the reducing and stabilizing agent for the synthesis of homogeneous silver-gold alloy NPs at room temperature. Our approach is a one-pot, low temperature, reaction-controlled, green and scalable synthesis route of well-controlled composition and narrow particle size distribution. The composition over a broad range of molar gold contents is confirmed by scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy (STEM-EDX) measurements and auxiliary inductively coupled plasma-optical emission spectroscopy measurements (ICP-OES). The distributions of the resulting particles in size and composition are obtained from multi-wavelength analytical ultracentrifugation using the optical back coupling method and further confirmed by high-pressure liquid chromatography. Finally, we provide insight into the reaction kinetics during the synthesis, discuss the reaction mechanism and demonstrate possibilities for scale-up by a factor of more than 250 by increasing the reactor volume and NP concentration.

7.
Nanoscale ; 14(35): 12928-12939, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36043498

RESUMO

In this study, we introduce a method for the simultaneous retrieval of two-dimensional size-composition distributions of noble metal Ag-Au alloy nanoparticles utilizing an analytical ultracentrifuge equipped with a multiwavelength extinction detector (MWL-AUC). MWL-AUC is used to measure coupled optical and sedimentation properties of the particles. The optical response of the nanoparticles is calculated using Mie's theory, where the particles' complex refractive index is corrected due to the effect of reduced mean free path of electrons. Using a combined analysis of the hydrodynamic and spectral data captured by MWL-AUC, the size and composition of the alloy particles is retrieved. Our method is validated through the analysis of synthetic data and by the very good agreement between experimental scanning transmission electron microscopy and our AUC data. The presented comprehensive characterization approach contributes to improved synthesis, scale-up and production of particulate systems as it provides a simple, fast and direct method to determine noble metal alloy nanoparticle size and composition distributions simultaneously.

8.
J Microsc ; 237(3): 341-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20500393

RESUMO

Aberration-corrected high-resolution transmission electron microscopy (HRTEM) has been applied to resolve the atomic structure of a complex layered crystal, (PbS)(1.14)NbS(2), which comprises a high density of incommensurate interfaces. The strong suppression of image delocalization and the favourable contrast transfer under negative C(s) imaging (NCSI) conditions have been exploited for obtaining HRTEM images which directly reveal the projected crystal structure and allow to study lattice imperfections, like stacking disorder and layer undulations, with atomic scale resolution. The advantages of aberration-corrected HRTEM over conventional HRTEM are demonstrated by direct comparison of experimental images and computer simulations.

9.
Nanoscale ; 8(8): 4529-36, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26661036

RESUMO

High-quality fabrication of plasmonic devices often relies on wet-chemically grown ultraflat, presumably single-crystalline gold flakes due to their superior materials properties. However, important details about their intrinsic structure and their optical properties are not well understood yet. In this study, we present a synthesis routine for large flakes with diameters of up to 70 µm and an in-depth investigation of their structural and optical properties. The flakes are precisely analyzed by transmission electron microscopy, electron backscatter diffraction and micro-ellipsometry. We found new evidence for the existence of twins extending parallel to the Au flake {111} surfaces which have been found to not interfere with the presented nanopatterning. Micro-Ellipsometry was carried out to determine the complex dielectric function and to compare it to previous measurements of bulk single crystalline gold. Finally, we used focused ion beam milling to prepare smooth crystalline layers and high-quality nanostructures with desired thickness down to 10 nm to demonstrate the outstanding properties of the flakes. Our findings support the plasmonics and nano optics community with a better understanding of this material which is ideally suited for superior plasmonic nanostructures.

10.
Ultramicroscopy ; 171: 82-88, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27643461

RESUMO

A new method for the preparation of freestanding thin film samples for mechanical testing in transmission electron microscopes is presented. It is based on a combination of focused ion beam (FIB) milling and electron-beam-assisted etching with xenon difluoride (XeF2) precursor gas. The use of the FIB allows for the target preparation of microstructural defects and enables well-defined sample geometries which can be easily adapted in order to meet the requirements of various testing setups. In contrast to existing FIB-based preparation approaches, the area of interest is never exposed to ion beam irradiation which preserves a pristine microstructure. The method can be applied to a wide range of thin film material systems compatible with XeF2 etching. Its feasibility is demonstrated for gold and alloyed copper thin films and its practical application is discussed.

11.
Nanoscale ; 7(43): 18105-18, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26469399

RESUMO

In this work we investigated fundamental properties of CuInS2 quantum dots in dependence of the particle size distribution (PSD). Size-selective precipitation (SSP) with acetone as poor solvent was performed as an adequate post-processing step. Our results provide deep insight into the correlation between particle size and various optical characteristics as bandgap energy, absorption and emission features and the broadness of the emission signal. These structure-property relationships are only achieved due to the unique combination of different analytical techniques. Our study reveals that the removal of 10 wt% of smallest particles from the feed results in an enhancement of the emission signal. This improvement is ascribed to a decreased quenching of the emission in larger particles. Our results reveal the impact of PSDs on the properties and the performance of an ensemble of multicomponent QDs and anticipate the high potential of controlling PSDs by well-developed post-processing.

12.
Lab Chip ; 15(7): 1742-7, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25673275

RESUMO

Micro-chips based on organic-inorganic hybrid nanoparticles (NPs) composed of nanoalloys of gold (Au) and silver (Ag) embedded in an amorphous carbonaceous matrix (C-Au-Ag NPs) were prepared directly on a substrate by the laser-induced deposition (for short: LID) method. The C-Au-Ag NPs show a unique plasmon resonance which enhances Raman scattering of analytes, making the µ-chips suitable to detect ultra-low-volumes (10(-12) liter) and concentrations (10(-9) M) of bio-agents and a hazardous compound. These micro-chips constitute a novel, flexible solid-state device that can be used for applications in point-of-care diagnostics, consumer electronics, homeland security and environmental monitoring.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Análise em Microsséries/instrumentação , Nanotecnologia/métodos , Prata/química , Desenho de Equipamento , Análise Espectral Raman
13.
Ultramicroscopy ; 92(3-4): 111-32, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12213013

RESUMO

A new method for determining the polarity of crystals with sphalerite structure (GaAs, GaSb, InP, etc.) within the transmission electron microscope (TEM) is presented. The method is derived from an established convergent beam electron diffraction (CBED) method (J. Appl. Crystallogr. 15 (1982) 60) and exploits the effects of the dynamical scattering on the contrast of bend contour crossings in conventional TEM images. In contrast to the CBED method, the bend contour method is performed in the image mode of the TEM. The sample can, therefore, be viewed while performing the polarity analysis. Furthermore, in the presence of strong foil bending, the bend contour method has some advantages for practical work. A general contrast rule for the bend contour intersections is stated which allows to readily obtain the crystal polarity by comparing the contrast in experimental images with the prediction of the rule. Exemplarily, the polarity of GaAs in TEM samples prepared for investigation in the two frequently used projections < 001 > and < 110 > is determined. The validity of the rule for the cases studied is confirmed by simulations of the dynamical scattering process. Furthermore, an independent analysis of the crystal polarity by making use of a long-range-ordered (GaIn)P layer grown on top of the GaAs confirms the results obtained with the bend contour method. As an example, the usefulness of the method is demonstrated in an analysis of the alpha/beta-character of misfit dislocations at the interface between the GaAs substrate and the (GaIn)P layer.

14.
Ultramicroscopy ; 92(3-4): 273-83, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12213029

RESUMO

The large-angle convergent beam electron diffraction (LACBED) technique is used for determining the crystal polarity of GaP and GaAs single crystals from < 1 1 0 > cross-sectional samples. The method which is based on an earlier approach using convergent beam electron diffraction (CBED) evaluates the polarity-sensitive contrast of high odd-index Bragg-lines in [0 0 2] dark-field patterns. The polarity is determined by application of a simple contrast rule as well as by direct comparison with dynamical simulations. For the two materials the ranges of applicability are determined by a detailed analysis of the Bragg-line contrast as a function of the sample thickness. The coexistence of the Bragg-line pattern and the of shadow image of the defect in correct rotational relationship to each other makes the analysis straightforward and free from possible sources of errors. As an example, the crystal polarity of GaP is related to the morphology of facetted voids. The LACBED method is shown to be suitable for relating the analysis of extended crystal defects. The advantages and the disadvantages of the LACBED method are discussed in comparison with the corresponding CBED method and with a recent method based on the analysis of bend contours.

15.
J Phys Chem B ; 117(33): 9683-9, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23889004

RESUMO

The adsorption behavior and electronic interactions of bovine serum albumin (BSA) with ZnO nanorod surfaces were investigated using high-resolution transmission electron microscopy as well as stationary and time-resolved optical spectroscopy techniques. Transmission electron microscopy shows that ZnO nanorod surfaces are surrounded by a homogeneous amorphous BSA film with thicknesses between ~2.5 and 5.0 nm. The electronic structure and adsorption geometry of BSA were examined using high-angle annular dark field scanning transmission electron microscopy combined with electron energy loss spectroscopy. The adsorption process was observed to result into an unfolded conformation of BSA becoming predominantly bound in the side-on orientation at the ZnO surface. This adsorption mode of the BSA molecules allows for a strong interaction with surface states of the ZnO nanorods. This is obvious from its efficient quenching of the defect-center photoluminescence of ZnO. Complementary information of electronic interactions across the ZnO nanorod interface was obtained from femtosecond transient absorption spectroscopy experiments. The rise dynamics of the measured transients revealed altered hole trapping dynamics and, thus, indicated to heterogeneous charge transfer as emerging from adsorbed BSA molecules to defect centers of the ZnO interface.


Assuntos
Nanotubos/química , Soroalbumina Bovina/química , Óxido de Zinco/química , Animais , Bovinos , Elétrons , Microscopia Eletrônica de Transmissão , Soroalbumina Bovina/metabolismo
16.
Ultramicroscopy ; 111(3): 245-50, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21333862

RESUMO

Aberration-corrected HRTEM is applied to explore the potential of NCSI contrast imaging to quantitatively analyse the complex atomic structure of misfit layered compounds and their incommensurate interfaces. Using the (PbS)(1.14)NbS(2) misfit layered compound as a model system it is shown that atom column position analyses at the incommensurate interfaces can be performed with precisions reaching a statistical accuracy of ±6pm. The procedure adopted for these studies compares experimental images taken from compound regions free of defects and interface modulations with a structure model derived from XRD experiments and with multi-slice image simulations for the corresponding NCSI contrast conditions used. The high precision achievable in such experiments is confirmed by a detailed quantitative analysis of the atom column positions at the incommensurate interfaces, proving a tetragonal distortion of the monochalcogenide sublattice.

17.
Phys Rev Lett ; 96(8): 086401, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16606202

RESUMO

We study the formation of planar network nanostructures, which develop during metal deposition on initially smooth surfaces of layered compounds. Using in situ low-energy electron microscopy for dynamic observation and high-resolution transmission electron microscopy for structure analysis, we have observed the rapid formation of hexagonal networks of linear "nanofolds" with prismatic cavities on top of layered VSe2 crystals. Their formation results from relaxation of compressive strains which build up during Cu intercalation into a thin surface layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA