Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Biol Chem ; 293(8): 2755-2769, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29301937

RESUMO

An increasing prevalence of cases of drug-resistant tuberculosis requires the development of more efficacious chemotherapies. We previously reported the discovery of a new class of cyclipostins and cyclophostin (CyC) analogs exhibiting potent activity against Mycobacterium tuberculosis both in vitro and in infected macrophages. Competitive labeling/enrichment assays combined with MS have identified several serine or cysteine enzymes in lipid and cell wall metabolism as putative targets of these CyC compounds. These targets included members of the antigen 85 (Ag85) complex (i.e. Ag85A, Ag85B, and Ag85C), responsible for biosynthesis of trehalose dimycolate and mycolylation of arabinogalactan. Herein, we used biochemical and structural approaches to validate the Ag85 complex as a pharmacological target of the CyC analogs. We found that CyC7ß, CyC8ß, and CyC17 bind covalently to the catalytic Ser124 residue in Ag85C; inhibit mycolyltransferase activity (i.e. the transfer of a fatty acid molecule onto trehalose); and reduce triacylglycerol synthase activity, a property previously attributed to Ag85A. Supporting these results, an X-ray structure of Ag85C in complex with CyC8ß disclosed that this inhibitor occupies Ag85C's substrate-binding pocket. Importantly, metabolic labeling of M. tuberculosis cultures revealed that the CyC compounds impair both trehalose dimycolate synthesis and mycolylation of arabinogalactan. Overall, our study provides compelling evidence that CyC analogs can inhibit the activity of the Ag85 complex in vitro and in mycobacteria, opening the door to a new strategy for inhibiting Ag85. The high-resolution crystal structure obtained will further guide the rational optimization of new CyC scaffolds with greater specificity and potency against M. tuberculosis.


Assuntos
Aciltransferases/antagonistas & inibidores , Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Acilação/efeitos dos fármacos , Aciltransferases/genética , Aciltransferases/metabolismo , Substituição de Aminoácidos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Antituberculosos/química , Antituberculosos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ligantes , Viabilidade Microbiana/efeitos dos fármacos , Conformação Molecular , Mutação , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Serina/química
2.
J Org Chem ; 84(13): 8724-8730, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31140269

RESUMO

The reaction of epoxy aldehydes with tetraethyl methylenediphosphonate gave γ,δ-epoxy vinyl phosphonates. The palladium-catalyzed addition of primary alcohols gave the monoprotected diols as single diastereoisomers. The trans- and cis-epoxides lead to opposite ( syn and anti) diastereoisomers of the addition products. The alkene of the vinyl phosphonates was subjected to hydrogenation, and the resulting saturated phosphonates underwent base-catalyzed cyclization to give phostones with a very high diastereoselectivity in the formation of the new chiral center at the phosphorus atom.

3.
Molecules ; 24(14)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315184

RESUMO

Cyclophostin, the cyclipostins and the salinipostins are structurally related cyclic enolphosphate natural products. This mini review describes their isolation, synthesis and biological activities. In addition, the synthesis and biological activities of monocyclic enolphosphate and mono and bicyclic enolphosphonate analogs are presented.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Organofosforados/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Estrutura Molecular , Compostos Organofosforados/farmacologia , Estereoisomerismo
4.
Chirality ; 28(9): 656-62, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27516372

RESUMO

Chromatographic separation of the enantiomers of parent compounds dimethyl α-hydroxyallyl phosphonate and 1-(dimethoxyphosphoryl) allyl methyl carbonate was demonstrated by high-performance liquid chromatography (HPLC) using Chiralpak AS-H and ad-H chiral stationary phases (CSP), respectively, using a combination of UV, polarimetric, and refractive index detectors. A comparison was made of the separation efficiency and elution order of enantiomeric α-hydroxyallyl phosphonates and their carbonate derivatives on commercially available polysaccharide AS, ad, OD, IC-3, and Whelk-O 1 CSPs. In general, the α-hydroxyallyl phosphonates were resolved on the AS-H CSP, whereas the carbonate derivatives and were preferentially resolved on the ad-H CSP. The impact of aryl substitution on the resolution of analytes and was evaluated. Thermodynamic parameters determined for enantioselective adsorption hydroxyphosphonates and on the AS-H CSP and carbonate on the ad-H CSP demonstrated enthalpic control for separation of the enantiomers. Chirality 28:656-662, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Compostos Alílicos/isolamento & purificação , Carbonatos/química , Cromatografia Líquida de Alta Pressão/métodos , Compostos Organofosforados/isolamento & purificação , Compostos Alílicos/química , Amilose/análogos & derivados , Carbamatos , Compostos Organofosforados/química , Polissacarídeos/química , Refratometria , Espectrofotometria Ultravioleta , Estereoisomerismo , Temperatura , Termodinâmica
5.
Top Curr Chem ; 361: 83-136, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25467537

RESUMO

It has been more than 50 years since the first phospho-aldol reactions of dialkyl phosphites were reported. These efficient P-C bond-forming reactions have become the cornerstone of methods for the synthesis of α-hydroxyphosphonates and, by numerous available substitution reactions, the synthesis of other α- and γ-substituted phosphonates and phosphonic acids. Much of the interest in α- and γ-substituted phosphonates and phosphonic acids has been stimulated by reports of their biological activity, which is often dependent upon their absolute and relative stereochemistry. In this chapter, we review diastereoselective and enantioselective additions of dialkyl phosphites to aldehydes and ketones, otherwise called the phospho-aldol, Pudovik or Abramov reactions.


Assuntos
Aldeídos/química , Cetonas/química , Organofosfonatos/síntese química , Fosfitos/química , Catálise , Estrutura Molecular , Estereoisomerismo
7.
Bioorg Med Chem ; 23(5): 944-52, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25678014

RESUMO

Cyclipostins are bicyclic lipophilic phosphate natural products. We report here that synthesized individual diastereomers of cyclipostins P and R have nanomolar IC50s toward hormone sensitive lipase (HSL). The less potent diastereomers of these compounds have 10-fold weaker IC50s. The monocyclic phosphate analog of cyclipostin P is nearly as potent as the bicyclic natural product. Bicyclic phosphonate analogs of both cyclipostins exhibit IC50s similar to those of the weaker diastereomer phosphates (about 400nM). The monocyclic phosphonate analog of cyclipostin P has similar potency. A series of monocyclic phosphonate analogs in which a hydrophobic tail extends from the lactone side of the ring are considerably poorer inhibitors, with IC50s around 50µM. Finally cyclophostin, a related natural product inhibitor of acetylcholinesterase (AChE) that lacks the hydrocarbon tail of cyclipostins, is not active against HSL. These results indicate a critical SAR for these compounds, the hydrophobic tail. The smaller lactone ring is not critical to activity, a similarity shared with cyclophostin and AChE. The HSL kinetics of inhibition for the cyclipostin P trans diastereomer were examined in detail. The reaction is irreversible with a KI of 40nM and a rate constant for inactivation of 0.2min(-1). These results are similar to those observed for cyclophostin and AChE.


Assuntos
Inibidores Enzimáticos/farmacologia , Compostos Organofosforados/farmacologia , Esterol Esterase/antagonistas & inibidores , Animais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Compostos Organofosforados/química , Ratos , Células Sf9 , Estereoisomerismo
8.
Tetrahedron Lett ; 56(23): 3534-3537, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26236053

RESUMO

Oxidation of hydroxy substituted phosphono allylic carbonates gave the aldehyde substituted phosphonates in good yield. Stereospecific palladium (0)-catalyzed cyclization in the presence of methanol or water gave acetal tetrahydrofuran and tetrahydropyran vinyl phosphonate products derived from hemiacetal trapping. The tetrahydrofuran acetals undergo Lewis acid catalyzed addition of nucleophiles to give diastereoisomeric mixtures of substituted tetrahydrofurans.

9.
Org Biomol Chem ; 12(14): 2161-6, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24589831

RESUMO

The use of state-of-the-art separation tools from the pharmaceutical industry for addressing intractable separation problems from academic synthetic chemistry is evaluated, showing fast and useful results for the resolution of complex mixtures, separation of closely related components, visualization of difficult to detect compounds and purification of synthetic intermediates. Some recommendations for potential near term deployment of separation tools within academia and the evolution of next generation separation technologies are discussed.


Assuntos
Fracionamento Químico/métodos , Indústria Farmacêutica/métodos , Compostos Orgânicos/síntese química , Compostos Orgânicos/isolamento & purificação , Técnicas de Química Sintética , Cromatografia Líquida de Alta Pressão , Cromatografia com Fluido Supercrítico , Laboratórios , Compostos Orgânicos/química
10.
Bioorg Med Chem ; 22(24): 6781-8, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25468042

RESUMO

Previously, we identified a class of salicylic acid derivatives that display inhibitory activity against the protein tyrosine phosphatase YopH from Yersinia pestis. Because docking study suggested that the large phenyl ring attaching to the salicylic acid core might be exposed to the solvent and might not contribute significantly to binding, we have developed a new class of compounds that no longer contain this phenyl ring. We first devised a synthetic scheme for the compounds and then developed an automated computational screening model surrounding this synthetic scheme to help select a small number of compounds for synthesis and experimental testing. Based on this computational screening model and the analysis of the structure-activity relationship of our previous class of compounds, we have synthesized eight compounds and found five that yield micromolar activity. When applying in a larger scale, the synthetic scheme and the computational screening model developed here should help to identify even more potent inhibitors in the future.


Assuntos
Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Inibidores Enzimáticos/química , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Salicilatos/química , Yersinia pestis/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/metabolismo , Salicilatos/síntese química , Salicilatos/metabolismo , Relação Estrutura-Atividade
11.
Beilstein J Org Chem ; 10: 1933-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25246952

RESUMO

Dimethyl (ß-substituted) vinylphosphonates do not readily undergo cross metathesis reactions with Grubbs catalyst and terminal alkenes. However, the corresponding mono- or diallyl vinylphosphonate esters undergo facile cross metathesis reactions. The improved reactivity is attributed to a relay step in the cross metathesis reaction mechanism.

12.
FEBS J ; 290(6): 1563-1582, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36197115

RESUMO

A hallmark of Mycobacterium tuberculosis (M. tb), the aetiologic agent of tuberculosis, is its ability to metabolise host-derived lipids. However, the enzymes and mechanisms underlying such metabolism are still largely unknown. We previously reported that the Cyclophostin & Cyclipostins (CyC) analogues, a new family of potent antimycobacterial molecules, react specifically and covalently with (Ser/Cys)-based enzymes mostly involved in bacterial lipid metabolism. Here, we report the synthesis of new CyC alkyne-containing inhibitors (CyCyne ) and their use for the direct fishing of target proteins in M. tb culture via bio-orthogonal click-chemistry activity-based protein profiling (CC-ABPP). This approach led to the capture and identification of a variety of enzymes, and many of them involved in lipid or steroid metabolisms. One of the captured enzymes, HsaD (Rv3569c), is required for the survival of M. tb within macrophages and is thus a potential therapeutic target. This prompted us to further explore and validate, through a combination of biochemical and structural approaches, the specificity of HsaD inhibition by the CyC analogues. We confirmed that the CyC bind covalently to the catalytic Ser114 residue, leading to a total loss of enzyme activity. These data were supported by the X-ray structures of four HsaD-CyC complexes, obtained at resolutions between 1.6 and 2.6 Å. The identification of mycobacterial enzymes directly captured by the CyCyne probes through CC-ABPP paves the way to better understand and potentially target key players at crucial stages of the bacilli life cycle.


Assuntos
Antituberculosos , Proteínas de Bactérias , Hidrolases , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Compostos Organofosforados , Humanos , Antituberculosos/síntese química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Macrófagos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Tuberculose/tratamento farmacológico , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Compostos Organofosforados/química , Cristalografia por Raios X , Hidrolases/antagonistas & inibidores , Hidrolases/química , Simulação por Computador
13.
J Nat Prod ; 75(6): 1090-101, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22620987

RESUMO

Five purpurealidin-derived marine secondary sponge metabolies have been synthesized through the carbodiimide coupling of an appropriate bromotyrosine unit. The structure elucidations have been confirmed through direct comparison with spectroscopic data of isolated natural products. Aplyzanzine A has been shown to be the most active product against a broad bacterial and fungal screen, demonstrating MIC values 2 to 4 times lower than the other metabolites in this study. Compounds 2, 3, 4a, and 5-7 exhibit a modest inhibition against slow growing mycobacteria (MIC 25-50 µg/mL), including Mycobacterium tuberculosis. iso-Anomoian A and suberedamine B showed antitumor activity in the NCI-DTP60 cell line screen at single-digit micromolar concentrations, with iso-anomoian A inhibiting 53 cell lines. These molecules present novel scaffolds for further optimization.


Assuntos
4-Butirolactona/análogos & derivados , Alcaloides/síntese química , Alcaloides/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Poríferos/química , Tirosina/análogos & derivados , 4-Butirolactona/síntese química , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Alcaloides/química , Animais , Antibacterianos/química , Antineoplásicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Biologia Marinha , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular , Tirosina/síntese química , Tirosina/química , Tirosina/farmacologia
14.
ACS Infect Dis ; 8(12): 2564-2578, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36379042

RESUMO

Patients with cystic fibrosis (CF) have a significantly higher risk of acquiring nontuberculous mycobacteria infections, predominantly due to Mycobacterium abscessus, than the healthy population. Because M. abscessus infections are a major cause of clinical decline and morbidity in CF patients, improving treatment and the detection of this mycobacterium in the context of a polymicrobial culture represents a critical component to better manage patient care. We report here the synthesis of fluorescent Dansyl derivatives of four active cyclipostins and cyclophostin analogues (CyCs) and provide new insights regarding the CyC's lack of activity against Gram-negative and Gram-positive bacteria, and above all into their mode of action against intramacrophagic M. abscessus cells. Our results pointed out that the intracellularly active CyC accumulate in acidic compartments within macrophage cells, that this accumulation appears to be essential for their delivery to mycobacteria-containing phagosomes, and consequently, for their antimicrobial effect against intracellular replicating M. abscessus, and that modification of such intracellular localization via disruption of endolysosomal pH strongly affects the CyC accumulation and efficacy. Moreover, we discovered that these fluorescent compounds could become efficient probes to specifically label mycobacterial species with high sensitivity, including M. abscessus in the presence several other pathogens like Pseudomonas aeruginosa and Staphylococcus aureus. Collectively, all present and previous data emphasized the therapeutic potential of unlabeled CyCs and the attractiveness of the fluorescent CyC as a potential new efficient diagnostic tool to be exploited in future diagnostic developments against mycobacterial-related infections, especially against M. abscessus.

15.
Eur J Med Chem ; 209: 112908, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33071055

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains the deadliest infectious disease worldwide with 1.5 million deaths in 2018, of which about 15% are attributed to resistant strains. Another significant example is Mycobacterium abscessus (M. abscessus), a nontuberculous mycobacteria (NTM) responsible for cutaneous and pulmonary infections, representing up to 95% of NTM infections in cystic fibrosis (CF) patients. M. abscessus is a new clinically relevant pathogen and is considered one of the most drug-resistant mycobacteria for which standardized chemotherapeutic regimens are still lacking. Together the emergence of M. tb and M. abscessus multi-drug resistant strains with ineffective and expensive therapeutics, have paved the way to the development of new classes of anti-mycobacterial agents offering additional therapeutic options. In this context, specific inhibitors of mycobacterial lipolytic enzymes represent novel and promising antibacterial molecules to address this challenging issue. The results highlighted here include a complete overview of the antibacterial activities, either in broth medium or inside infected macrophages, of two families of promising and potent anti-mycobacterial multi-target agents, i.e. oxadiazolone-core compounds (OX) and Cyclophostin & Cyclipostins analogs (CyC); the identification and biochemical validation of their effective targets (e.g., the antigen 85 complex and TesA playing key roles in mycolic acid metabolism) together with their respective crystal structures. To our knowledge, these are the first families of compounds able to target and impair replicating as well as intracellular bacteria. We are still impelled in deciphering their mode of action and finding new potential therapeutic targets against mycobacterial-related diseases.


Assuntos
Antituberculosos/química , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Compostos Organofosforados/química , Tuberculose/tratamento farmacológico , Antituberculosos/farmacologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Lactonas/farmacologia , Testes de Sensibilidade Microbiana , Ácidos Micólicos/metabolismo , Compostos Organofosforados/farmacologia , Orlistate/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos
16.
Bioorg Med Chem ; 18(6): 2265-2274, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20189400

RESUMO

Two new monocyclic analogs of the natural AChE inhibitor cyclophostin and two exocyclic enol phosphates were synthesized. The potencies and mechanisms of inhibition of the bicyclic and monocyclic enol phosphonates and the exocyclic enol phosphates toward human AChE are examined. One diastereoisomer of the bicyclic phosphonate exhibits an IC(50) of 3 microM. Potency is only preserved when the cyclic enol phosphonate is intact and conjugated to an ester. Kinetic analysis indicates both a binding and a slow inactivation step for all active compounds. Mass spectrometric analysis indicates that the active site Ser is indeed phosphorylated by the bicyclic phosphonate.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Organofosfonatos/química , Compostos Organofosforados/síntese química , Compostos Organofosforados/farmacologia , Acetilcolinesterase/química , Sítios de Ligação , Inibidores da Colinesterase/química , Humanos , Cinética , Espectrometria de Massas , Estrutura Molecular , Compostos Organofosforados/química , Estereoisomerismo , Relação Estrutura-Atividade
17.
Org Lett ; 22(10): 3830-3834, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32330059

RESUMO

Nickel-catalyzed reductive addition of phosphonodienes to aldehydes (the Mori-Tamaru reaction) gives hydroxy vinyl phosphonates in good yields with excellent control of the relative stereochemistry. Base-induced cyclization of the vinyl phosphonates yields phosphonomethyl-substituted tetrahydrofurans. Inversion of the hydroxyl stereochemistry by Mitsunobu reaction and then cyclization yields a different set of phosphonomethyl-substituted tetrahydrofuran diastereoisomers.

18.
Chemistry ; 15(12): 2874-914, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19204960

RESUMO

For over 30 years, rapamycin has generated a sustained and intense interest from the scientific community as a result of its exceptional pharmacological properties and challenging structural features. In addition to its well known therapeutic value as a potent immunosuppressive agent, rapamycin and its derivatives have recently gained prominence for the treatment of a wide variety of other human malignancies. Herein we disclose full details of our extensive investigation into the synthesis of rapamycin that culminated in a new and convergent preparation featuring a macro-etherification/catechol-templating strategy for construction of the macrocyclic core of this natural product.


Assuntos
Antineoplásicos/síntese química , Produtos Biológicos/síntese química , Imunossupressores/síntese química , Sirolimo/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Ciclização , Humanos , Imunossupressores/química , Imunossupressores/farmacologia , Estrutura Molecular , Sirolimo/química , Sirolimo/farmacologia
19.
J Am Soc Mass Spectrom ; 30(11): 2306-2317, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31399941

RESUMO

We investigate the gas-phase structures and fragmentation pathways of model compounds of anthracene derivatives of the general formula CcHhN1 utilizing tandem mass spectrometry and computational methods. We vary the substituent alkyl chain length, composition, and degree of branching. We find substantial experimental and theoretical differences between the linear and branched congeners in terms of fragmentation thresholds, available pathways, and distribution of products. Our calculations predict that the linear substituents initially isomerize to form lower energy branched isomers prior to loss of the alkyl substituents as alkenes. The rate-determining chemistry underlying these related processes is dominated by the ability to stabilize the alkene loss transition structures. This task is more effectively undertaken by branched substituents. Consequently, analyte lability systematically increased with degree of branching (linear < secondary < tertiary). The resulting anthracen-9-ylmethaniminium ion generated from these alkene loss reactions undergoes rate-limiting proton transfer to enable expulsion of either hydrogen cyanide or CNH. The combination of the differences in primary fragmentation thresholds and degree of radical-based fragmentation processes provide a potential means of distinguishing compounds that contain branched alkyl chain substituents from those with linear ones.

20.
ACS Infect Dis ; 5(9): 1597-1608, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31299146

RESUMO

Twelve new Cyclophostin and Cyclipostins analogues (CyC19-30) were synthesized, thus extending our series to 38 CyCs. Their antibacterial activities were evaluated against four pathogenic mycobacteria (Mycobacterium abscessus, Mycobacterium marinum, Mycobacterium bovis BCG, and Mycobacterium tuberculosis) and two Gram negative bacteria. The CyCs displayed very low toxicity toward host cells and were only active against mycobacteria. Importantly, several CyCs were active against extracellular M. abscessus (CyC17/CyC18ß/CyC25/CyC26) or intramacrophage residing mycobacteria (CyC7(α,ß)/CyC8(α,ß)) with minimal inhibitory concentrations (MIC50) values comparable to or better than those of amikacin or imipenem, respectively. An activity-based protein profiling combined with mass spectrometry allowed identification of the potential target enzymes of CyC17/CyC26, mostly being involved in lipid metabolism and/or in cell wall biosynthesis. Overall, these results strengthen the selective activity of the CyCs against mycobacteria, including the most drug-resistant M. abscessus, through the cumulative inhibition of a large number of Ser- and Cys-enzymes participating in key physiological processes.


Assuntos
Antibacterianos/síntese química , Bactérias/crescimento & desenvolvimento , Compostos Organofosforados/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/crescimento & desenvolvimento , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/crescimento & desenvolvimento , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA