Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568976

RESUMO

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Assuntos
Receptores Colinérgicos , Sinapses , Sinapses/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia , Neurônios Motores/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores/metabolismo , Colinérgicos , Receptores Pré-Sinápticos
2.
Science ; 383(6688): 1252-1259, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484078

RESUMO

Overgeneralization of fear to harmless situations is a core feature of anxiety disorders resulting from acute stress, yet the mechanisms by which fear becomes generalized are poorly understood. In this study, we show that generalized fear in mice results from a transmitter switch from glutamate to γ-aminobutyric acid (GABA) in serotonergic neurons of the lateral wings of the dorsal raphe. Similar change in transmitter identity was found in the postmortem brains of individuals with posttraumatic stress disorder (PTSD). Overriding the transmitter switch in mice prevented the acquisition of generalized fear. Corticosterone release and activation of glucocorticoid receptors mediated the switch, and prompt antidepressant treatment blocked the cotransmitter switch and generalized fear. Our results provide important insight into the mechanisms involved in fear generalization.


Assuntos
Encéfalo , Medo , Generalização da Resposta , Ácido Glutâmico , Transtornos de Estresse Pós-Traumáticos , Estresse Psicológico , Ácido gama-Aminobutírico , Animais , Camundongos , Encéfalo/metabolismo , Medo/fisiologia , Ácido gama-Aminobutírico/metabolismo , Neurônios/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Estresse Psicológico/metabolismo , Ácido Glutâmico/metabolismo , Corticosterona/metabolismo , Receptores de Glucocorticoides/metabolismo , Humanos
3.
Front Integr Neurosci ; 18: 1321872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440417

RESUMO

Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.

4.
Nat Commun ; 15(1): 4549, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811525

RESUMO

Breast cancer metastasis to the brain is a clinical challenge rising in prevalence. However, the underlying mechanisms, especially how cancer cells adapt a distant brain niche to facilitate colonization, remain poorly understood. A unique metabolic feature of the brain is the coupling between neurons and astrocytes through glutamate, glutamine, and lactate. Here we show that extracellular vesicles from breast cancer cells with a high potential to develop brain metastases carry high levels of miR-199b-5p, which shows higher levels in the blood of breast cancer patients with brain metastases comparing to those with metastatic cancer in other organs. miR-199b-5p targets solute carrier transporters (SLC1A2/EAAT2 in astrocytes and SLC38A2/SNAT2 and SLC16A7/MCT2 in neurons) to hijack the neuron-astrocyte metabolic coupling, leading to extracellular retention of these metabolites and promoting cancer cell growth. Our findings reveal a mechanism through which cancer cells of a non-brain origin reprogram neural metabolism to fuel brain metastases.


Assuntos
Astrócitos , Neoplasias Encefálicas , Neoplasias da Mama , MicroRNAs , Neurônios , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Feminino , Animais , Linhagem Celular Tumoral , Astrócitos/metabolismo , Astrócitos/patologia , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Vesículas Extracelulares/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Regulação Neoplásica da Expressão Gênica , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Ácido Láctico/metabolismo , Proliferação de Células
5.
Res Sq ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168375

RESUMO

Cognitive deficits are a long-lasting consequence of drug use, yet the convergent mechanism by which classes of drugs with different pharmacological properties cause similar deficits is unclear. We find that both phencyclidine and methamphetamine, despite differing in their targets in the brain, cause the same glutamatergic neurons in the medial prefrontal cortex to gain a GABAergic phenotype and decrease their expression of the vesicular glutamate transporter. Suppressing the drug-induced gain of GABA with RNA-interference prevents the appearance of memory deficits. Stimulation of dopaminergic neurons in the ventral tegmental area is necessary and sufficient to produce this gain of GABA. Drug-induced prefrontal hyperactivity drives this change in transmitter identity. Returning prefrontal activity to baseline, chemogenetically or with clozapine, reverses the change in transmitter phenotype and rescues the associated memory deficits. The results reveal a shared and reversible mechanism that regulates the appearance of cognitive deficits upon exposure to different drugs.

6.
M; Elsevier; 4th. ed; 2013. 1127 p.
Monografia em Espanhol | BVSNACUY | ID: bnu-181178
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA