Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(3): e1009432, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760879

RESUMO

Neuronal damage is a major consequence of bacterial meningitis, but little is known about mechanisms of bacterial interaction with neurons leading to neuronal cell death. Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and many survivors develop neurological sequelae after the acute infection has resolved, possibly due to neuronal damage. Here, we studied mechanisms for pneumococcal interactions with neurons. Using human primary neurons, pull-down experiments and mass spectrometry, we show that pneumococci interact with the cytoskeleton protein ß-actin through the pilus-1 adhesin RrgA and the cytotoxin pneumolysin (Ply), thereby promoting adhesion and invasion of neurons, and neuronal death. Using our bacteremia-derived meningitis mouse model, we observe that RrgA- and Ply-expressing pneumococci co-localize with neuronal ß-actin. Using purified proteins, we show that Ply, through its cholesterol-binding domain 4, interacts with the neuronal plasma membrane, thereby increasing the exposure on the outer surface of ß-actin filaments, leading to more ß-actin binding sites available for RrgA binding, and thus enhanced pneumococcal interactions with neurons. Pneumococcal infection promotes neuronal death possibly due to increased intracellular Ca2+ levels depending on presence of Ply, as well as on actin cytoskeleton disassembly. STED super-resolution microscopy showed disruption of ß-actin filaments in neurons infected with pneumococci expressing RrgA and Ply. Finally, neuronal death caused by pneumococcal infection could be inhibited using antibodies against ß-actin. The generated data potentially helps explaining mechanisms for why pneumococci frequently cause neurological sequelae.


Assuntos
Actinas/metabolismo , Proteínas de Fímbrias/metabolismo , Meningite Pneumocócica/patologia , Neurônios/patologia , Estreptolisinas/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Morte Celular/fisiologia , Humanos , Meningite Pneumocócica/metabolismo , Camundongos , Neurônios/metabolismo
2.
J Nanobiotechnology ; 20(1): 292, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729633

RESUMO

BACKGROUND: Increasing evidence suggests that platelets play a central role in cancer progression, with altered storage and selective release from platelets of specific tumor-promoting proteins as a major mechanism. Fluorescence-based super-resolution microscopy (SRM) can resolve nanoscale spatial distribution patterns of such proteins, and how they are altered in platelets upon different activations. Analysing such alterations by SRM thus represents a promising, minimally invasive strategy for platelet-based diagnosis and monitoring of cancer progression. However, broader applicability beyond specialized research labs will require objective, more automated imaging procedures. Moreover, for statistically significant analyses many SRM platelet images are needed, of several different platelet proteins. Such proteins, showing alterations in their distributions upon cancer progression additionally need to be identified. RESULTS: A fast, streamlined and objective procedure for SRM platelet image acquisition, analysis and classification was developed to overcome these limitations. By stimulated emission depletion SRM we imaged nanoscale patterns of six different platelet proteins; four different SNAREs (soluble N-ethylmaleimide factor attachment protein receptors) mediating protein secretion by membrane fusion of storage granules, and two angiogenesis regulating proteins, representing cargo proteins within these granules coupled to tumor progression. By a streamlined procedure, we recorded about 100 SRM images of platelets, for each of these six proteins, and for five different categories of platelets; incubated with cancer cells (MCF-7, MDA-MB-231, EFO-21), non-cancer cells (MCF-10A), or no cells at all. From these images, structural similarity and protein cluster parameters were determined, and probability functions of these parameters were generated for the different platelet categories. By comparing these probability functions between the categories, we could identify nanoscale alterations in the protein distributions, allowing us to classify the platelets into their correct categories, if they were co-incubated with cancer cells, non-cancer cells, or no cells at all. CONCLUSIONS: The fast, streamlined and objective acquisition and analysis procedure established in this work confirms the role of SNAREs and angiogenesis-regulating proteins in platelet-mediated cancer progression, provides additional fundamental knowledge on the interplay between tumor cells and platelets, and represent an important step towards using tumor-platelet interactions and redistribution of nanoscale protein patterns in platelets as a basis for cancer diagnostics.


Assuntos
Neoplasias , Proteínas SNARE , Plaquetas/metabolismo , Fusão de Membrana , Microscopia de Fluorescência/métodos , Neoplasias/metabolismo , Proteínas SNARE/metabolismo
3.
J Am Chem Soc ; 142(41): 17681-17692, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32924464

RESUMO

Conjugated polymers are regarded as promising candidates for dopant-free hole-transport materials (HTMs) in efficient and stable perovskite solar cells (PSCs). Thus far, the vast majority of polymeric HTMs feature structurally complicated benzo[1,2-b:4,5-b']dithiophene (BDT) analogs and electron-withdrawing heterocycles, forming a strong donor-acceptor (D-A) structure. Herein, a new class of phenanthrocarbazole (PC)-based polymeric HTMs (PC1, PC2, and PC3) has been synthesized by inserting a PC unit into a polymeric thiophene or selenophene chain with the aim of enhancing the π-π stacking of adjacent polymer chains and also to efficiently interact with the perovskite surface through the broad and planar conjugated backbone of the PC. Suitable energy levels, excellent thermostability, and humidity resistivity together with remarkable photoelectric properties are obtained via meticulously tuning the conformation and elemental composition of the polymers. As a result, PSCs containing PC3 as dopant-free HTM show a stabilized power conversion efficiency (PCE) of 20.8% and significantly enhanced longevity, rendering one of the best types of PSCs based on dopant-free HTMs. Subsequent experimental and theoretical studies reveal that the planar conformation of the polymers contributes to an ordered and face-on stacking of the polymer chains. Furthermore, introduction of the "Lewis soft" selenium atom can passivate surface trap sites of perovskite films by Pb-Se interaction and facilitate the interfacial charge separation significantly. This work reveals the guiding principles for rational design of dopant-free polymeric HTMs and also inspires rational exploration of small molecular HTMs.

4.
Methods Appl Fluoresc ; 9(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33207335

RESUMO

In stimulated emission depletion (STED) imaging, the excitation and depletion laser beams extend well beyond the focal plane in the imaged sample. We investigated how photobleaching resulting from this irradiation can affect STED images, by acquiring 3D images of fluorescent polystyrene beads using a 2D STED microscope, and applying different Z pixel sizes, scanning speeds, resulting in different laser light doses. While higher STED beam irradiances can increase the spatial resolution, they can also significantly increase photobleaching and thereby reduce signal-to-background levels. In 2D STED imaging, based on a single scan within the focal plane, scan parameters can often be selected to avoid photobleaching effects. Upon 3D optical sectioning experiments however, using the same scan parameters, additional cumulative effects of photobleaching may appear, due to the extension of the excitation and depletion laser beams beyond the focal planes being scanned. Apart from a reduction in signal-to-background levels, such photobleaching can lead to an apparent shift of the axial localization of the objects in the images, but also to an increased resolution in the axial dimension. These findings, confirmed by simulations based on a simplified model for photobleaching, suggests some caution in volumetric STED imaging experiments, but also a possibility for enhanced axial resolution in such experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA