Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Musculoskelet Neuronal Interact ; 19(1): 79-93, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30839306

RESUMO

OBJECTIVES: To clarify the effects of neuromuscular dysfunction on hindlimb loading, muscle atrophy, and bone homeostasis. METHODS: We quantified changes to hindlimb loading, muscle atrophy, and bone morphology following either Botulinum toxin A (BTxA) induced muscle paralysis or peripheral nerve injury (PNI) in mice; two in vivo models that we anticipated would differently alter gait and mechanical loading patterns due to their distinct effects on neuromuscular signaling. To confirm the expected behavioral effects of PNI, we assessed mechanical allodynia of the ipsilateral hindlimb using von Frey testing and activity (distance traveled and speed) was monitored in both groups using open field testing. Peak vertical ground reaction forces (GRF) and ankle and knee kinematics during normal locomotion were quantified and used to estimate peak mid-diaphyseal normal strains. Muscle atrophy and trabecular and cortical bone morphology were assessed via high-resolution microCT imaging. RESULTS: BTxA-induced calf paralysis caused severe muscle atrophy and altered gait kinetics and kinematics and reduced gait-induced normal strains. PNI increased mechanical allodynia but did not alter gait, nor did it cause muscle atrophy. We observed that muscle paralysis and PNI both led to severe trabecular bone loss but only BTxA-induced paralysis increased cortical bone resorption. CONCLUSIONS: While mechanical stimuli clearly have essential functions in bone development and adaptation, these data emphasize that neuromuscular signaling, independent of load-induced mechanical strains, may modulate trabecular bone homeostasis in normal and disease states.


Assuntos
Osso e Ossos/fisiologia , Doenças Neuromusculares/fisiopatologia , Paralisia/fisiopatologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Toxinas Botulínicas Tipo A/farmacologia , Transtornos Neurológicos da Marcha/etiologia , Homeostase/fisiologia , Camundongos , Atrofia Muscular/fisiopatologia , Fármacos Neuromusculares/farmacologia , Paralisia/induzido quimicamente
2.
Am J Physiol Cell Physiol ; 313(5): C533-C540, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855162

RESUMO

Transient muscle paralysis engendered by a single injection of botulinum toxin A (BTxA) rapidly induces profound focal bone resorption within the medullary cavity of adjacent bones. While initially conceived as a model of mechanical disuse, osteoclastic resorption in this model is disproportionately severe compared with the modest gait defect that is created. Preliminary studies of bone marrow following muscle paralysis suggested acute upregulation of inflammatory cytokines, including TNF-α and IL-1. We therefore hypothesized that BTxA-induced muscle paralysis would rapidly alter the inflammatory microenvironment and the osteoclastic potential of bone marrow. We tested this hypothesis by defining the time course of inflammatory cell infiltration, osteoinflammatory cytokine expression, and alteration in osteoclastogenic potential in the tibia bone marrow following transient muscle paralysis of the calf muscles. Our findings identified inflammatory cell infiltration within 24 h of muscle paralysis. By 72 h, osteoclast fusion and pro-osteoclastic inflammatory gene expression were upregulated in tibia bone marrow. These alterations coincided with bone marrow becoming permissive to the formation of osteoclasts of greater size and greater nuclei numbers. Taken together, our data are consistent with the thesis that transient calf muscle paralysis induces acute inflammation within the marrow of the adjacent tibia and that these alterations are temporally consistent with a role in mediating muscle paralysis-induced bone resorption.


Assuntos
Reabsorção Óssea/fisiopatologia , Inflamação/etiologia , Músculo Esquelético/efeitos dos fármacos , Osteoclastos/patologia , Paralisia/fisiopatologia , Animais , Medula Óssea/patologia , Reabsorção Óssea/etiologia , Toxinas Botulínicas Tipo A/toxicidade , Feminino , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuromusculares/toxicidade , Paralisia/induzido quimicamente , Paralisia/imunologia , Linfócitos T/imunologia
3.
Front Bioeng Biotechnol ; 11: 1206008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383524

RESUMO

Voluntary wheel running (VWR) is widely used to study how exercise impacts a variety of physiologies and pathologies in rodents. The primary activity readout of VWR is aggregated wheel turns over a given time interval (most often, days). Given the typical running frequency of mice (∼4 Hz) and the intermittency of voluntary running, aggregate wheel turn counts, therefore, provide minimal insight into the heterogeneity of voluntary activity. To overcome this limitation, we developed a six-layer convolutional neural network (CNN) to determine the hindlimb foot strike frequency of mice exposed to VWR. Aged female C57BL/6 mice (22 months, n = 6) were first exposed to wireless angled running wheels for 2 h/d, 5 days/wk for 3 weeks with all VWR activities recorded at 30 frames/s. To validate the CNN, we manually classified foot strikes within 4800 1-s videos (800 randomly chosen for each mouse) and converted those values to frequency. Upon iterative optimization of model architecture and training on a subset of classified videos (4400), the CNN model achieved an overall training set accuracy of 94%. Once trained, the CNN was validated on the remaining 400 videos (accuracy: 81%). We then applied transfer learning to the CNN to predict the foot strike frequency of young adult female C57BL6 mice (4 months, n = 6) whose activity and gait differed from old mice during VWR (accuracy: 68%). In summary, we have developed a novel quantitative tool that non-invasively characterizes VWR activity at a much greater resolution than was previously accessible. This enhanced resolution holds potential to overcome a primary barrier to relating intermittent and heterogeneous VWR activity to induced physiological responses.

4.
JBMR Plus ; 7(2): e10712, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36751418

RESUMO

The anabolic response of aged bone to skeletal loading is typically poor. Efforts to improve mechanotransduction in aged bone have met with limited success. This study investigated whether the bone response to direct skeletal loading is improved by reducing sympathetic suppression of osteoblastic bone formation via ß2AR. To test this possibility, we treated aged wild-type C57BL/6 mice with a selective ß2AR antagonist, butaxamine (Butax), before each of nine bouts of cantilever bending of the right tibia. Midshaft periosteal bone formation was assessed by dynamic histomorphometry of loaded and contralateral tibias. Butax treatment did not alter osteoblast activity of contralateral tibias. Loading alone induced a modest but significant osteogenic response. However, when loading was combined with Butax pretreatment, the anabolic response was significantly elevated compared with loading preceded by saline injection. Subsequent studies in osteoblastic cultures revealed complex negative interactions between adrenergic and mechanically induced intracellular signaling. Activation of ß2AR by treatment with the ß1, ß2-agonist isoproterenol (ISO) before fluid flow exposure diminished mechanically stimulated ERK1/2 phosphorylation in primary bone cell outgrowth cultures and AKT phosphorylation in MC3T3-E1 pre-osteoblast cultures. Expression of mechanosensitive Fos and Ptgs2 genes was enhanced with ISO treatment and reduced with flow in both MC3T3-E1 and primary cultures. Finally, co-treatment of MC3T3-E1 cells with Butax reversed these ISO effects, confirming a critical role for ß2AR in these responses. In combination, these results demonstrate that selective inhibition of ß2AR is sufficient to enhance the anabolic response of the aged skeleton to loading, potentially via direct effects upon osteoblasts. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

5.
PLoS Comput Biol ; 6(9)2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20838577

RESUMO

The increasing incidence of osteoporosis worldwide requires anabolic treatments that are safe, effective, and, critically, inexpensive given the prevailing overburdened health care systems. While vigorous skeletal loading is anabolic and holds promise, deficits in mechanotransduction accrued with age markedly diminish the efficacy of readily complied, exercise-based strategies to combat osteoporosis in the elderly. Our approach to explore and counteract these age-related deficits was guided by cellular signaling patterns across hierarchical scales and by the insight that cell responses initiated during transient, rare events hold potential to exert high-fidelity control over temporally and spatially distant tissue adaptation. Here, we present an agent-based model of real-time Ca(2+)/NFAT signaling amongst bone cells that fully described periosteal bone formation induced by a wide variety of loading stimuli in young and aged animals. The model predicted age-related pathway alterations underlying the diminished bone formation at senescence, and hence identified critical deficits that were promising targets for therapy. Based upon model predictions, we implemented an in vivo intervention and show for the first time that supplementing mechanical stimuli with low-dose Cyclosporin A can completely rescue loading induced bone formation in the senescent skeleton. These pre-clinical data provide the rationale to consider this approved pharmaceutical alongside mild physical exercise as an inexpensive, yet potent therapy to augment bone mass in the elderly. Our analyses suggested that real-time cellular signaling strongly influences downstream bone adaptation to mechanical stimuli, and quantification of these otherwise inaccessible, transient events in silico yielded a novel intervention with clinical potential.


Assuntos
Osso e Ossos/fisiologia , Senescência Celular/fisiologia , Biologia Computacional/métodos , Osteogênese/fisiologia , Suporte de Carga/fisiologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Análise de Variância , Animais , Fenômenos Biomecânicos/fisiologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Cálcio/metabolismo , Senescência Celular/efeitos dos fármacos , Ciclosporina/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fatores de Transcrição NFATC/metabolismo , Osteócitos/fisiologia , Osteogênese/efeitos dos fármacos , Osteoporose/patologia , Reprodutibilidade dos Testes , Tíbia/citologia
6.
JBMR Plus ; 3(5): e10087, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31131340

RESUMO

Nearly all exogenous loading models of bone adaptation apply dynamic loading superimposed upon a time invariant static preload (SPL) in order to ensure stable, reproducible loading of bone. Given that SPL may alter aspects of bone mechanotransduction (eg, interstitial fluid flow), we hypothesized that SPL inhibits bone formation induced by dynamic loading. As a first test of this hypothesis, we utilized a newly developed device that enables stable dynamic loading of the murine tibia with SPLs ≥ -0.01 N. We subjected the right tibias of BALB/c mice (4-month-old females) to dynamic loading (-3.8 N, 1 Hz, 50 cycles/day, 10 s rest) superimposed upon one of three SPLs: -1.5 N, -0.5 N, or -0.03 N. Mice underwent exogenous loading 3 days/week for 3 weeks. Metaphyseal trabecular bone adaptation (µCT) and midshaft cortical bone formation (dynamic histomorphometry) were assessed following euthanasia (day 22). Ipsilateral tibias of mice loaded with a -1.5-N SPL demonstrated significantly less trabecular bone volume/total volume (BV/TV) than contralateral tibias (-12.9%). In contrast, the same dynamic loading superimposed on a -0.03-N SPL significantly elevated BV/TV versus contralateral tibias (12.3%) and versus the ipsilateral tibias of the other SPL groups (-0.5 N: 46.3%, -1.5 N: 37.2%). At the midshaft, the periosteal bone formation rate (p.BFR) induced when dynamic loading was superimposed on -1.5-N and -0.5-N SPLs was significantly amplified in the -0.03-N SPL group (>200%). These data demonstrate that bone anabolism induced by dynamic loading is markedly inhibited by SPL magnitudes commonly implemented in the literature (ie, -0.5 N, -1.5 N). The inhibitory impact of SPL has not been recognized in bone adaptation models and, as such, SPLs have been neither universally reported nor standardized. Our study therefore identifies a previously unrecognized, potent inhibitor of mechanoresponsiveness that has potentially confounded studies of bone adaptation and translation of insights from our field. © 2018 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

7.
Bone ; 42(4): 653-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18280231

RESUMO

Numerous studies indicate that C3H/HeJ (C3H) mice are mildly responsive to mechanical loading compared to C57BL/6J (C57) mice. Guided by data indicating high baseline periosteal osteoblast activity in 16 wk C3H mice, we speculated that simply allowing the C3H mice to age until basal periosteal bone formation was equivalent to that of 16 wk C57 mice would restore mechanoresponsiveness in C3H mice. We tested this hypothesis by subjecting the right tibiae of 32 wk old C3H mice and 16 wk old C57 mice to low magnitude rest-inserted loading (peak strain: 1235 mu epsilon) and then exposing the right tibiae of 32 wk C3H mice to low (1085 mu epsilon) or moderate (1875 mu epsilon) magnitude cyclic loading. The osteoblastic response to loading on the endocortical and periosteal surfaces was evaluated via dynamic histomorphometry. At 32 wk of age, C3H mice responded to low magnitude rest-inserted loading with significantly elevated periosteal mineralizing surface, mineral apposition rate and bone formation compared to unloaded contralateral bones. Surprisingly, the periosteal bone formation induced by low magnitude rest-inserted loading in C3H mice exceeded that induced in 16 wk C57 mice. At 32 wk of age, C3H mice also demonstrated an elevated response to increased magnitudes of cyclic loading. We conclude that a high level of basal osteoblast function in 16 wk C3H mice appears to overwhelm the ability of the tissue to respond to an otherwise anabolic mechanical loading stimulus. However, when basal surface osteoblast activity is equivalent to that of 16 wk C57 mice, C3H mice demonstrate a clear ability to respond to either rest-inserted or cyclic loading.


Assuntos
Envelhecimento/fisiologia , Animais , Camundongos , Estresse Mecânico
8.
J Appl Physiol (1985) ; 102(5): 1945-52, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17255366

RESUMO

We hypothesized that a 10-s rest interval (at zero load) inserted between each load cycle would increase the osteogenic effects of mechanical loading near previously identified thresholds for strain magnitude and cycle numbers. We tested our hypothesis by subjecting the right tibiae of female C57BL/6J mice (16 wk, n = 70) to exogenous mechanical loading within a peri-threshold physiological range of strain magnitudes and load cycle numbers using a noninvasive murine tibia loading device. Bone responses to mechanical loading were determined via dynamic histomorphometry. More specifically, we contrasted bone formation induced by cyclic vs. rest-inserted loading (10-s rest at zero load inserted between each load cycle) by first varying peak strains (1,000, 1,250, or 1,600 micro epsilon) at fixed cycle numbers (50 cycles/day, 3 days/wk for 3 wk) and then varying cycle numbers (10, 50, or 250 cycles/day) at a fixed strain magnitude (1,250 micro epsilon). Within the range of strain magnitudes tested, the slope of periosteal bone formation rate (p.BFR/BS) with increasing strain magnitudes was significantly increased by rest-inserted compared with cyclical loading. Within the range of load cycles tested, the slope of p.BFR/BS with increasing load cycles of rest-inserted loading was also significantly increased by rest-inserted compared with cyclical loading. In sum, the data of this study indicate that inserting a 10-s rest interval between each load cycle amplifies bone's response to mechanical loading, even within a peri-threshold range of strain magnitudes and cycle numbers.


Assuntos
Adaptação Fisiológica , Osteogênese , Tíbia/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Modelos Lineares , Camundongos , Camundongos Endogâmicos C57BL , Estresse Mecânico , Suporte de Carga
9.
Bone ; 38(2): 257-64, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16185943

RESUMO

The means by which muscle function modulates bone homeostasis is poorly understood. To begin to address this issue, we have developed a novel murine model of unilateral transient hindlimb muscle paralysis using botulinum toxin A (Botox). Female C57BL/6 mice (16 weeks) received IM injections of either saline or Botox (n = 10 each) in both the quadriceps and calf muscles of the right hindleg. Gait dysfunction was assessed by multi-observer inventory, muscle alterations were determined by wet mass, and bone alterations were assessed by micro-CT imaging at the distal femur, proximal tibia, and tibia mid-diaphysis. Profound degradation of both muscle and bone was observed within 21 days despite significant restoration of weight bearing function by 14 days. The muscle mass of the injected quadriceps and calf muscles was diminished -47.3% and -59.7%, respectively, vs. saline mice (both P < 0.001). The ratio of bone volume to tissue volume (BV/TV) within the distal femoral epiphysis and proximal tibial metaphysis of Botox injected limbs was reduced -43.2% and -54.3%, respectively, while tibia cortical bone volume was reduced -14.6% (all P < 0.001). Comparison of the contralateral non-injected limbs indicated the presence of moderate systemic effects in the model that were most probably associated with diminished activity following muscle paralysis. Taken as a whole, the micro-CT data implied that trabecular and cortical bone loss was primarily achieved by bone resorption. These data confirm the decisive role of neuromuscular function in mediating bone homeostasis and establish a model with unique potential to explore the mechanisms underlying this relation. Given the rapidly expanding use of neuromuscular inhibitors for indications such as pain reduction, these data also raise the critical need to monitor bone loss in these patients.


Assuntos
Toxinas Botulínicas Tipo A/efeitos adversos , Lâmina de Crescimento/fisiologia , Músculo Esquelético/efeitos dos fármacos , Paralisia/induzido quimicamente , Animais , Pesos e Medidas Corporais , Densidade Óssea , Doenças Ósseas Metabólicas , Modelos Animais de Doenças , Epífises/patologia , Feminino , Fêmur/diagnóstico por imagem , Fêmur/patologia , Marcha , Membro Posterior/patologia , Camundongos , Fatores de Tempo , Tomografia Computadorizada por Raios X
10.
Bone ; 38(3): 310-6, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16290255

RESUMO

Thrombospondin 2 (TSP2) is an extracellular matrix (ECM) protein localized to bone. Since mice with a targeted disruption of the TSP2 gene (TSP2-null) have increased bone formation, we hypothesized that mice lacking TSP2 would show an enhanced osteogenic response to mechanical loading. We addressed our hypothesis by subjecting wild-type (WT) and TSP2-null mice to mechanical loading using the non-invasive murine tibia loading device, and statistical comparisons were made between loaded and unloaded bones within genotype, between genotypes, and between the periosteal and endocortical surfaces within genotype. Right tibiae of WT and TSP2-null mice received 5 days of a low-magnitude loading protocol. This low-magnitude loading (inducing approximately 900 and 500 muepsilon at periosteal and endocortical surfaces of WT bones, respectively) affected neither periosteal nor endocortical bone formation rate (BFR/BS) when comparing loaded to intact bones in either WT or TSP2-null mice, nor did it result in any significant differences between WT and TSP2-null. As well, there was no difference between loaded endocortical and periosteal surfaces in WT mice; however, endocortical BFR/BS in TSP2-null loaded tibia was significantly elevated relative to the periosteal BFR/BS-despite peak periosteal strains being significantly greater than endocortical strains in TSP2-null mice (690 versus 460 muepsilon). To confirm this counterintuitive surface-specific response in TSP2-null mice and to induce significant periosteal bone formation, osteogenic potency of the loading protocol was amplified by doubling the number of loading bouts (10 loading days) and loading magnitude (1 Hz, resulting in 1400 and 900 muepsilon peak strain at the periosteal and endocortical surfaces, respectively). Under load, both WT and TSP2-null mice showed significantly increased periosteal mineralizing surface (by nearly three-fold and five-fold, respectively), but mineral apposition rate (MAR) was not statistically changed. The increased MS/BS resulted in a five-fold increase in WT periosteal BFR/BS, but the TSP2-null periosteal BFR/BS was unchanged. Furthermore, this increase in WT loaded periosteal BFR/BS was statistically greater than the WT endocortical BFR/BS. At the endocortical surface of WT mice, loading did not significantly increase bone formation parameters (versus intact). In contrast, at the endocortical surface of TSP2-null mice, loading induced a significant two-fold increase in BFR/BS (versus intact), that was also significantly greater than the endocortical BFR/BS of loaded WT mice. Thus, exogenous loading of TSP2-null mice resulted in highly variable responses that did not reflect the induced strains at the periosteal and endocortical surfaces. While in WT mice, loading resulted in increased periosteal BFR/BS that was greater than the endocortical BFR/BS, in TSP2-null mice loading resulted in endocortical (not periosteal) BFR/BS that was elevated. This reversal in envelope-specific bone formation in TSP2-null mice occurred despite periosteal strains being significantly greater than endocortical (1290 versus 775 muepsilon) and strain distributions being similar to that of WT. These results show that the disruption of a single gene can lead to a reversal in normal pattern of load induced bone formation, and more specifically, that the functional interaction of TSP2 with mechanical loading is highly contextual and specific to the cortical bone envelope examined.


Assuntos
Osteogênese/fisiologia , Periósteo/citologia , Periósteo/fisiologia , Trombospondinas/deficiência , Suporte de Carga/fisiologia , Animais , Feminino , Camundongos , Camundongos Congênicos , Camundongos Knockout , Estimulação Física/métodos , Trombospondinas/genética , Tíbia/citologia , Tíbia/fisiologia
11.
J Biomech ; 39(14): 2638-46, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16223502

RESUMO

We recently observed that insertion of unloaded rest between each load cycle substantially enhanced bone formation induced by mild loading regimens. To begin to explore this result, we have developed an agent based model for real-time signaling induced when osteocytic networks are challenged by mechanical stimuli. In the model, activity induced in individual osteocytes were governed by the following cellular functions: (1) threshold levels of tissue strain magnitudes were required to initiate and maximally activate cells, (2) cell activity beyond thresholds were propagated within localized neighborhoods and influenced recipient cell activity, (3) cellular activity was modulated by 'molecular' stores and the rates at which stores were replenished when cells were quiescent. Using this model, the real-time response of osteocyte networks was determined as the average of individual cell activity. While not explicitly embedded within the model, interactions between cellular functions served as positive, negative, and end-point feedback mechanisms and resulted in unique real-time network responses to distinct mechanical stimuli. Specifically, the real-time network response to cyclic stimuli consisted of a large magnitude transient followed by low-level steady state fluctuations, while rest-inserted stimuli induced multiple secondary transients. Analysis of interaction patterns suggested that rest-inserted stimuli induced this enhanced and sustained signaling within osteocytic networks by enabling cell recovery of expended molecular stores and by efficiently utilizing properties inherent to cell-cell communication in bone. Importantly, this emergence based approach suggested mechanisms potentially underlying the benefit of rest-inserted stimuli and provides a unique framework for a broader exploration of mechanotransduction function within bone.


Assuntos
Comunicação Celular/fisiologia , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Osteócitos/fisiologia , Algoritmos , Animais , Humanos , Osteócitos/citologia , Descanso/fisiologia , Suporte de Carga/fisiologia
12.
J Bone Miner Res ; 20(2): 250-6, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15647819

RESUMO

UNLABELLED: The pathway(s) by which disuse is transduced into locally mediated osteoclastic resorption remain unknown. We found that both acute disuse (in vivo) and direct hypoxia (in vitro) induced rapid upregulation of OPN expression by osteocytes. Within the context of OPN's role in osteoclast migration and attachment, hypoxia-induced osteocyte OPN expression may serve to mediate disuse-induced bone resorption. INTRODUCTION: We have recently reported that disuse induces osteocyte hypoxia. Because hypoxia upregulates osteopontin (OPN) in nonconnective tissue cells, we hypothesized that both disuse and hypoxia would rapidly elevate expression of OPN by osteocytes. MATERIALS AND METHODS: The response of osteocytes to 24 h of disuse was explored by isolating the left ulna diaphysis of adult male turkeys from loading (n = 5). Cortical osteocytes staining positive for OPN were determined using immunohistochemistry and confocal microscopy. In vitro experiments were performed to determine if OPN expression was altered in MLO-Y4 osteocytes by direct hypoxia (3, 6, 24, and 48 h) or hypoxia (3 and 24 h) followed by 24 h of reoxygenation. A final in vitro experiment explored the potential of protein kinase C (PKC) to regulate hypoxia-induced osteocyte OPN mRNA alterations. RESULTS: We found that 24 h of disuse significantly elevated osteocyte OPN expression in vivo (145% versus intact bones; p = 0.02). We confirmed this finding in vitro, by observing rapid and significant upregulation of OPN protein expression after 24 and 48 h of hypoxia. Whereas 24 h of reoxygenation after 3 h of hypoxia restored normal osteocyte OPN expression levels, 24 h of reoxygenation after 24 h of hypoxia did not mitigate elevated osteocyte OPN expression. Finally, preliminary inhibitor studies suggested that PKC serves as a potent upstream regulator of hypoxia-induced osteocyte OPN expression. CONCLUSIONS: Given the documented roles of OPN as a mediator of environmental stress (e.g., hypoxia), an osteoclast chemotaxant, and a modulator of osteoclastic attachment to bone, we speculate that hypoxia-induced osteocyte OPN expression may serve to mediate disuse-induced osteoclastic resorption. Furthermore, it seems that a brief window of time exists in which reoxygenation (as might be achieved by reloading bone) can serve to inhibit this pathway.


Assuntos
Osteócitos/metabolismo , Oxigênio/metabolismo , Sialoglicoproteínas/biossíntese , Regulação para Cima , Animais , Western Blotting , Reabsorção Óssea , Movimento Celular , Células Cultivadas , Quimiotaxia , Hipóxia , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Masculino , Camundongos , Osteoclastos/metabolismo , Osteopontina , Proteína Quinase C/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Perus
13.
Med Sci Sports Exerc ; 47(5): 1095-103, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25207932

RESUMO

PURPOSE: As our society becomes increasingly sedentary, compliance with exercise regimens that require numerous high-energy activities each week become less likely. Alternatively, given an osteogenic exercise intervention that required minimal effort, it is reasonable to presume that participation would be enhanced. Insertion of brief rest intervals between each cycle of mechanical loading holds potential to achieve this result because substantial osteoblast function is activated by many fewer loading repetitions within each loading bout. Here, we examined the complementary hypothesis that the number of bouts per week of rest-inserted loading could be reduced from three bouts per week without loss of osteogenic efficacy. METHODS: We conducted a series of 3-wk in vivo experiments that noninvasively exposed the right tibiae of mice to either cyclic (1 Hz) or rest-inserted loading interventions and quantified osteoblast function via dynamic histomorphometry. RESULTS: Although reducing loading bouts from three bouts per week (i.e., nine total bouts) to one bout per week (i.e., three total bouts) effectively mitigated the osteogenic benefit of cyclic loading, the same reduction did not significantly reduce periosteal bone formation parameters induced by rest-inserted loading. The osteogenic response was robust to the timing of the rest-inserted loading bouts (three bouts in the first week vs one bout per week for 3 wk). However, elimination of any single bout of the three one-bout-per-week bouts mitigated the osteogenic response to rest-inserted loading. Finally, periosteal osteoblast function assessed after the 3-wk intervention was not sensitive to the timing or number of rest-inserted loading bouts. CONCLUSIONS: We conclude that rest-inserted loading holds potential to retain the osteogenic benefits of mechanical loading with significantly reduced frequency of bouts of activity while also enabling greater flexibility in the timing of the activity.


Assuntos
Osteogênese/fisiologia , Condicionamento Físico Animal/métodos , Suporte de Carga/fisiologia , Animais , Feminino , Camundongos Endogâmicos C57BL , Descanso , Estresse Mecânico , Tíbia/fisiologia , Fatores de Tempo
14.
J Bone Miner Res ; 17(3): 493-501, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11874240

RESUMO

Transgenic and knockout mice present a unique opportunity to study mechanotransduction pathways in vivo, but the difficulty inherent with applying externally controlled loads to the small mouse skeleton has hampered this approach. We have developed a novel device that enables the noninvasive application of controlled mechanical loads to the murine tibia. Calibration of tissue strains induced by the device indicated that the normal strain environment was repeatable across loading bouts. Two in vivo studies were performed to show the usefulness of the device. Using C57Bl/6J mice, we found that dynamic but not static loading increased cortical bone area. This result is consistent with previous models of bone adaptation, and the lack of adaptation induced by static loading serves as a negative control for the device. In a preliminary study, transgenic mice selectively overexpressing insulin-like growth factor 1 (IGF-1) in osteoblasts underwent a low-magnitude loading regimen. Periosteal bone formation was elevated 5-fold in the IGF-1-overexpressing mice but was not elevated in wild-type littermates, showing the potential for synergism between mechanical loading and selected factors. Based on these data, we anticipate that the murine tibia-loading device will enhance assessment of mechanotransduction pathways in vivo and, as a result, has the potential to facilitate novel gene discovery and optimization of synergies between drug therapies and mechanical loading.


Assuntos
Tíbia/fisiologia , Animais , Fenômenos Biomecânicos , Desenho de Equipamento , Feminino , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos
15.
J Bone Miner Res ; 17(9): 1613-20, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12211431

RESUMO

Strategies to counteract bone loss with exercise have had fairly limited success, particularly those regimens subjecting the skeleton to mild activity such as walking. In contrast, here we show that it is possible to induce substantial bone formation with low-magnitude loading. In two distinct in vivo models of bone adaptation, we found that insertion of a 10-s rest interval between each load cycle transformed a locomotion-like loading regime that minimally influenced osteoblast activity into a potent anabolic stimulus. In the avian ulna model, the minimal mean (+SE) periosteal labeled surface (Ps.LS) observed in the intact contralateral bones (1.6 +/- 1.5%) was doubled after 3 consecutive days of low-magnitude loading (3.8 +/- 1.5%; p = 0.03). However, modifying the regimen by inserting 10 s of rest between each load cycle significantly enhanced the periosteal response (21.9 +/- 4.5%; p = 0.03). In the murine tibia model, 5 consecutive days of 100 low-magnitude loading cycles did not significantly alter mean periosteal bone formation rate (BFR) compared with contralateral bones (0.011 +/- 0.005 microm3/microm2 per day vs. 0.021 +/- 0.013 microm3/microm2 per day). In contrast, separating each of 10 of the same loading cycles with 10 s of rest significantly elevated periosteal BFR (0.167 +/- 0.049 microm3/microm2 per day; p = 0.01). Endocortical bone formation parameters were not altered by any loading regimen in either model. We conclude that 10 s of rest between each load cycle of a low-magnitude loading protocol greatly enhances the osteogenic potential of the regimen.


Assuntos
Osteogênese/fisiologia , Animais , Fenômenos Biomecânicos , Remodelação Óssea/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/fisiologia , Esforço Físico/fisiologia , Estresse Mecânico , Tíbia/anatomia & histologia , Tíbia/fisiologia , Fatores de Tempo , Perus , Ulna/anatomia & histologia , Ulna/fisiologia
16.
Bone ; 33(6): 946-55, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14678854

RESUMO

The mild and moderate physical activity most successfully implemented in the elderly has proven ineffective in augmenting bone mass. We have recently reported that inserting 10 s of unloaded rest between load cycles transformed low-magnitude loading into a potent osteogenic regimen for both adolescent and adult animals. Here, we extended our observations and hypothesized that inserting rest between load cycles will initiate and enhance bone formation in the aged skeleton. Aged female C57BL/6 mice (21.5 months) were subject to 2-week mechanical loading protocols utilizing the noninvasive murine tibia loading device. We tested our hypothesis by examining whether (a) inserting 10 s of rest between low-magnitude load cycles can initiate bone formation in aged mice and (b) whether bone formation response in aged animals can be further enhanced by doubling strain magnitudes, inserting rest between these load cycles, and increasing the number of high-magnitude rest-inserted load cycles. We found that 50 cycles/day of low-magnitude cyclic loading (1200 microepsilon peak strain) did not influence bone formation rates in aged animals. In contrast, inserting 10 s of rest between each of these low-magnitude load cycles was sufficient to initiate and significantly increase periosteal bone formation (fivefold versus intact controls and twofold versus low-magnitude loading). However, otherwise potent strategies of doubling induced strain magnitude (to 2400 microepsilon) and inserting rest (10 s, 20 s) and, lastly, utilizing fivefold the number of high-magnitude rest-inserted load cycles (2400 microepsilon, 250 cycles/day) were not effective in enhancing bone formation beyond that initiated via low-magnitude rest-inserted loading. We conclude that while rest-inserted loading was significantly more osteogenic in aged animals than the corresponding low-magnitude cyclic loading regimen, age-related osteoblastic deficits most likely diminished the ability to optimize this stimulus.


Assuntos
Osso e Ossos/fisiologia , Osteogênese/fisiologia , Fatores Etários , Animais , Fenômenos Biomecânicos , Osso e Ossos/anatomia & histologia , Osso e Ossos/metabolismo , Calcificação Fisiológica/fisiologia , Feminino , Análise de Elementos Finitos , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL , Periósteo/crescimento & desenvolvimento , Estresse Mecânico , Tíbia/anatomia & histologia , Tíbia/crescimento & desenvolvimento , Fatores de Tempo , Tomografia Computadorizada por Raios X , Suporte de Carga/fisiologia
17.
Cell Mol Bioeng ; 7(2): 254-265, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484988

RESUMO

Growing evidence suggests that aging compromises the ability of the skeleton to respond to anabolic mechanical stimuli. Recently, we reported that treating senescent mice with Cyclosporin A (CsA) rescued aging-related deficits in loading-induced bone formation. Given that the actions of CsA are often attributed to inhibition of the calcineurin/NFAT axis, we hypothesized that CsA enhances gene expression in bone cells exposed to fluid flow, by inhibiting nuclear NFATc1 accumulation. When exposed to flow, MC3T3-E1 osteoblastic cells exhibited rapid nuclear accumulation of NFATc1 that was abolished by CsA treatment. Under differentiation conditions, intermittent CsA treatment enhanced gene expression of late osteoblastic differentiation markers and activator protein 1 (AP-1) family members. Superimposing flow upon CsA further enhanced expression of the AP-1 members Fra-1 and c-Jun. To delineate the contribution of NFAT in this response, cells were treated with VIVIT, a specific inhibitor of the calcineurin/NFAT interaction. Treatment with VIVIT blocked flow-induced nuclear NFATc1 accumulation but did not recapitulate the CsA-mediated enhancement of flow-induced AP-1 component gene expression. Taken together, our study is the first to demonstrate that CsA enhances mechanically-induced gene expression of AP-1 components in bone cells, and suggests that this response requires calcineurin-dependent mechanisms that are independent of inhibiting NFATc1 nuclear accumulation.

18.
PLoS One ; 9(1): e84868, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404194

RESUMO

Age-related decline in periosteal adaptation negatively impacts the ability to utilize exercise to enhance bone mass and strength in the elderly. We recently observed that in senescent animals subject to cyclically applied loading, supplementation with Cyclosporin A (CsA) substantially enhanced the periosteal bone formation rates to levels observed in young animals. We therefore speculated that if the CsA supplement could enhance bone response to a variety of types of mechanical stimuli, this approach could readily provide the means to expand the range of mild stimuli that are robustly osteogenic at senescence. Here, we specifically hypothesized that a given CsA supplement would enhance bone formation induced in the senescent skeleton by both cyclic (1-Hz) and rest-inserted loading (wherein a 10-s unloaded rest interval is inserted between each load cycle). To examine this hypothesis, the right tibiae of senescent female C57BL/6 mice (22 Mo) were subjected to cyclic or rest-inserted loading supplemented with CsA at 3.0 mg/kg. As previously, we initially found that while the periosteal bone formation rate (p.BFR) induced by cyclic loading was enhanced when supplemented with 3.0 mg/kg CsA (by 140%), the response to rest-inserted loading was not augmented at this CsA dosage. In follow-up experiments, we observed that while a 30-fold lower CsA dosage (0.1 mg/kg) significantly enhanced p.BFR induced by rest-inserted loading (by 102%), it was ineffective as a supplement with cyclic loading. Additional experiments and statistical analysis confirmed that the dose-response relations were significantly different for cyclic versus rest-inserted loading, only because the two stimuli required distinct CsA dosages for efficacy. While not anticipated a priori, clarifying the complexity underlying the observed interaction between CsA dosage and loading type holds potential for insight into how bone response to a broad range of mechanical stimuli may be substantially enhanced in the senescent skeleton.


Assuntos
Osso e Ossos/efeitos dos fármacos , Ciclosporina/administração & dosagem , Osteogênese/efeitos dos fármacos , Fatores Etários , Envelhecimento/fisiologia , Animais , Relação Dose-Resposta a Droga , Feminino , Camundongos
19.
J Bone Miner Res ; 29(11): 2346-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24806738

RESUMO

Intramuscular administration of Botulinum toxin (BTx) has been associated with impaired osteogenesis in diverse conditions of bone formation (eg, development, growth, and healing), yet the mechanisms of neuromuscular-bone crosstalk underlying these deficits have yet to be identified. Motivated by the emerging utility of zebrafish (Danio rerio) as a rapid, genetically tractable, and optically transparent model for human pathologies (as well as the potential to interrogate neuromuscular-mediated bone disorders in a simple model that bridges in vitro and more complex in vivo model systems), in this study, we developed a model of BTx-induced muscle paralysis in adult zebrafish, and we examined its effects on intramembranous ossification during tail fin regeneration. BTx administration induced rapid muscle paralysis in adult zebrafish in a manner that was dose-dependent, transient, and focal, mirroring the paralytic phenotype observed in animal and human studies. During fin regeneration, BTx impaired continued bone ray outgrowth, morphology, and patterning, indicating defects in early osteogenesis. Further, BTx significantly decreased mineralizing activity and crystalline mineral accumulation, suggesting delayed late-stage osteoblast differentiation and/or altered secondary bone apposition. Bone ray transection proximal to the amputation site focally inhibited bone outgrowth in the affected ray, implicating intra- and/or inter-ray nerves in this process. Taken together, these studies demonstrate the potential to interrogate pathological features of BTx-induced osteoanabolic dysfunction in the regenerating zebrafish fin, define the technological toolbox for detecting bone growth and mineralization deficits in this process, and suggest that pathways mediating neuromuscular regulation of osteogenesis may be conserved beyond established mammalian models of bone anabolic disorders.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Toxinas Botulínicas/toxicidade , Calcificação Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Paralisia/metabolismo , Peixe-Zebra/metabolismo , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Osteoblastos/metabolismo , Osteoblastos/patologia , Paralisia/induzido quimicamente , Paralisia/patologia
20.
PLoS One ; 8(9): e74205, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040202

RESUMO

Bone has long been established to be a highly mechanosensitive tissue. When subjected to mechanical loading, bone exhibits profoundly different anabolic responses depending on the temporal pattern in which the stimulus is applied. This phenomenon has been termed temporal processing, and involves complex signal amplification mechanisms that are largely unidentified. In this study, our goal was to characterize transcriptomic perturbations arising from the insertion of intermittent rest periods (a temporal variation with profound effects on bone anabolism) in osteoblastic cells subjected to fluid flow, and assess the utility of these perturbations to identify signaling pathways that are differentially activated by this temporal variation. At the level of the genome, we found that the common and differential alterations in gene expression arising from the two flow conditions were distributionally distinct, with the differential alterations characterized by many small changes in a large number of genes. Using bioinformatics analysis, we identified distinct up- and down-regulation transcriptomic signatures associated with the insertion of rest intervals, and found that the up-regulation signature was significantly associated with MAPK signaling. Confirming the involvement of the MAPK pathway, we found that the insertion of rest intervals significantly elevated flow-induced p-ERK1/2 levels by enabling a second spike in activity that was not observed in response to continuous flow. Collectively, these studies are the first to characterize distinct transcriptomic perturbations in bone cells subjected to continuous and intermittent stimulation, and directly demonstrate the utility of systems-based transcriptomic analysis to identify novel acute signaling pathways underlying temporal processing in bone cells.


Assuntos
Osso e Ossos/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Mecanotransdução Celular , Osteoblastos/metabolismo , Transcriptoma , Animais , Osso e Ossos/citologia , Linhagem Celular , Perfilação da Expressão Gênica , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/citologia , Reologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA