Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Cell Mol Life Sci ; 78(19-20): 6533-6540, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34424346

RESUMO

Chemotherapy-induced cognitive impairment (CICI) has been observed in a large fraction of cancer survivors. Although many of the chemotherapeutic drugs do not cross the blood-brain barrier, following treatment, the structure and function of the brain are altered and cognitive dysfunction occurs in a significant number of cancer survivors. The means by which CICI occurs is becoming better understood, but there still remain unsolved questions of the mechanisms involved. The hypotheses to explain CICI are numerous. More than 50% of FDA-approved cancer chemotherapy agents are associated with reactive oxygen species (ROS) that lead to oxidative stress and activate a myriad of pathways as well as inhibit pathways necessary for proper brain function. Oxidative stress triggers the activation of different proteins, one in particular is tumor necrosis factor alpha (TNFα). Following treatment with various chemotherapy agents, this pro-inflammatory cytokine binds to its receptors at the blood-brain barrier and translocates to the parenchyma via receptor-mediated endocytosis. Once in brain, TNFα initiates pathways that may eventually lead to neuronal death and ultimately cognitive impairment. TNFα activation of the c-jun N-terminal kinases (JNK) and Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathways may contribute to both memory decline and loss of higher executive functions reported in patients after chemotherapy treatment. Chemotherapy also affects the brain's antioxidant capacity, allowing for accumulation of ROS. This review expands on these topics to provide insights into the possible mechanisms by which the intersection of oxidative stress and TNFΑ are involved in chemotherapy-induced cognitive impairment.


Assuntos
Antineoplásicos/efeitos adversos , Comprometimento Cognitivo Relacionado à Quimioterapia/metabolismo , Estresse Oxidativo/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639006

RESUMO

Breast cancer development is associated with macrophage infiltration and differentiation in the tumor microenvironment. Our previous study highlights the crucial function of reactive oxygen species (ROS) in enhancing macrophage infiltration during the disruption of mammary tissue polarity. However, the regulation of ROS and ROS-associated macrophage infiltration in breast cancer has not been fully determined. Previous studies identified retinoid orphan nuclear receptor alpha (RORα) as a potential tumor suppressor in human breast cancer. In the present study, we showed that retinoid orphan nuclear receptor alpha (RORα) significantly decreased ROS levels and inhibited ROS-mediated cytokine expression in breast cancer cells. RORα expression in mammary epithelial cells inhibited macrophage infiltration by repressing ROS generation in the co-culture assay. Using gene co-expression and chromatin immunoprecipitation (ChIP) analyses, we identified complex I subunits NDUFS6 and NDUFA11 as RORα targets that mediated its function in suppressing superoxide generation in mitochondria. Notably, the expression of RORα in 4T1 cells significantly inhibited cancer metastasis, reduced macrophage accumulation, and enhanced M1-like macrophage differentiation in tumor tissue. In addition, reduced RORα expression in breast cancer tissue was associated with an increased incidence of cancer metastasis. These results provide additional insights into cancer-associated inflammation, and identify RORα as a potential target to suppress ROS-induced mammary tumor progression.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Neoplasias/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Biomarcadores , Respiração Celular , Citocinas/metabolismo , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
3.
J Biol Chem ; 294(17): 6831-6842, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30858178

RESUMO

Mitochondria are major sites of energy metabolism that influence numerous cellular events, including immunity and cancer development. Previously, we reported that the mitochondrion-specific antioxidant enzyme, manganese-containing superoxide dismutase (MnSOD), has dual roles in early- and late-carcinogenesis stages. However, how defective MnSOD impacts the chain of events that lead to cell transformation in pathologically normal epidermal cells that have been exposed to carcinogens is unknown. Here, we show that UVB radiation causes nitration and inactivation of MnSOD leading to mitochondrial injury and mitophagy. In keratinocytes, exposure to UVB radiation decreased mitochondrial oxidative phosphorylation, increased glycolysis and the expression of autophagy-related genes, and enhanced AKT Ser/Thr kinase (AKT) phosphorylation and cell growth. Interestingly, UVB initiated a prosurvival mitophagy response by mitochondria-mediated reactive oxygen species (ROS) signaling via the mammalian target of the mTOR complex 2 (mTORC2) pathway. Knockdown of rictor but not raptor abrogated UVB-induced mitophagy responses. Furthermore, fractionation and proximity-ligation assays reveal that ROS-mediated mTOC2 activation in mitochondria is necessary for UVB-induced mitophagy. Importantly, pretreatment with the MnSOD mimic MnTnBuOE-2-PyP5+ (MnP) attenuates mTORC2 activation and suppresses UVB-induced mitophagy. UVB radiation exposure also increased cell growth as assessed by soft-agar colony survival and cell growth assays, and pretreatment with MnP or the known autophagy inhibitor 3-methyladenine abrogated UVB-induced cell growth. These results indicate that MnSOD is a major redox regulator that maintains mitochondrial health and show that UVB-mediated MnSOD inactivation promotes mitophagy and thereby prevents accumulation of damaged mitochondria.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mitofagia/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/antagonistas & inibidores , Raios Ultravioleta , Animais , Autofagia/fisiologia , Linhagem Celular , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Nitratos/metabolismo , Oxirredução , Proteína Companheira de mTOR Insensível à Rapamicina/fisiologia , Proteína Regulatória Associada a mTOR/fisiologia
4.
J Cell Sci ; 130(1): 190-202, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27656113

RESUMO

Loss of epithelial cell polarity promotes cell invasion and cancer dissemination. Therefore, identification of factors that disrupt polarized acinar formation is crucial. Reactive oxygen species (ROS) drive cancer progression and promote inflammation. Here, we show that the non-polarized breast cancer cell line T4-2 generates significantly higher ROS levels than polarized S1 and T4R cells in three-dimensional (3D) culture, accompanied by induction of the nuclear factor κB (NF-κB) pathway and cytokine expression. Minimizing ROS in T4-2 cells with antioxidants reestablished basal polarity and inhibited cell proliferation. Introducing constitutively activated RAC1 disrupted cell polarity and increased ROS levels, indicating that RAC1 is a crucial regulator that links cell polarity and ROS generation. We also linked monocyte infiltration with disruption of polarized acinar structure using a 3D co-culture system. Gain- and loss-of-function experiments demonstrated that increased ROS in non-polarized cells is necessary and sufficient to enhance monocyte recruitment. ROS also induced cytokine expression and NF-κB activity. These results suggest that increased ROS production in mammary epithelial cell leads to disruption of cell polarity and promotes monocyte infiltration.


Assuntos
Técnicas de Cultura de Células/métodos , Polaridade Celular , Células Epiteliais/citologia , Glândulas Mamárias Humanas/citologia , Monócitos/citologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Pharmacol Res ; 117: 267-273, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28063894

RESUMO

One of the major complaints patients who survive cancer often make is chemotherapy induced cognitive impairment (CICI), which survivors often call "chemo brain." CICI is a side effect of chemotherapy due to the cytotoxicity and neurotoxicity of anti-cancer drugs causing structural and functional changes in brain, even when drugs that do not cross the blood brain barrier (BBB) are used. Diminished cognitive functions including diminution of learning and memory, concentration and attention, processing speed and executive functions that reduce quality of life and ability to work are common signs and symptoms of CICI. There still is not a clarified and complete mechanism for CICI, but researchers have pointed to several biochemical candidates. Chemotherapy-induced, cytokine-mediated involvement in CICI will be mainly discussed in this review paper with emphasis on different types of cytokines, correlated with BBB and epigenetic changes. Mechanisms of ROS-generating, anti-cancer drugs and their relation to cytokine-mediated CICI will be emphasized.


Assuntos
Antineoplásicos/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Citocinas/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Disfunção Cognitiva/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Humanos , Neoplasias/tratamento farmacológico
6.
Handb Exp Pharmacol ; 240: 439-456, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28176043

RESUMO

Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF-κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA signal transductions by mitochondrial superoxide. Oxidative phosphorylation via the electron transfer chain, glycolysis, and generation of superoxide from mitochondria could be important factors in regulating signal transduction, cellular homeostasis, and cell death.


Assuntos
Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , NF-kappa B/fisiologia
7.
Arch Biochem Biophys ; 595: 54-60, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27095216

RESUMO

Prof. Dr. Helmut Sies is a pioneer of "Oxidative Stress", and has published over 18 papers with the name of "Oxidative Stress" in the title. He has been Editor-in-Chief of the journal "Archives of Biochemistry and Biophysics" for many years, and is a former Editor-in-Chief of the journal "Free Radical Research". He has clarified our understanding of the causes of chronic developing diseases, and has studied antioxidant factors. In this article, importance of "Oxidative Stress" and our mitochondrial oxidative stress studies; roles of mitochondrial ROS, effects of vitamin E and its homologues in oxidative stress-related diseases, effects of antioxidants in vivo and in vitro, and a mitochondrial superoxide theory for oxidative stress diseases and aging are introduced, and some of our interactions with Helmut are described, congratulating and appreciating his great path.


Assuntos
Estresse Oxidativo , Envelhecimento , Antioxidantes , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Vitamina E/fisiologia
8.
J Neurosci Res ; 93(11): 1728-39, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26251011

RESUMO

Superoxide dismutases (SODs) are the primary reactive oxygen species (ROS)-scavenging enzymes of the cell and catalyze the dismutation of superoxide radicals O2- to H2O2 and molecular oxygen (O2). Among the three forms of SOD identified, manganese-containing SOD (MnSOD, SOD2) is a homotetramer located wholly in the mitochondrial matrix. Because of the SOD2 strategic location, it represents the first mechanism of defense against the augmentation of ROS/reactive nitrogen species levels in the mitochondria for preventing further damage. This study seeks to understand the effects that the partial lack (SOD2(-/+) ) or the overexpression (TgSOD2) of MnSOD produces on oxidative/nitrative stress basal levels in different brain isolated cellular fractions (i.e., mitochondrial, nuclear, cytosolic) as well as in the whole-brain homogenate. Furthermore, because of the known interaction between SOD2 and p53 protein, this study seeks to clarify the impact that the double mutation has on oxidative/nitrative stress levels in the brain of mice carrying the double mutation (p53(-/-) × SOD2(-/+) and p53(-/-) × TgSOD2). We show that each mutation affects mitochondrial, nuclear, and cytosolic oxidative/nitrative stress basal levels differently, but, overall, no change or reduction of oxidative/nitrative stress levels was found in the whole-brain homogenate. The analysis of well-known antioxidant systems such as thioredoxin-1 and Nrf2/HO-1/BVR-A suggests their potential role in the maintenance of the cellular redox homeostasis in the presence of changes of SOD2 and/or p53 protein levels.


Assuntos
Encéfalo/metabolismo , Estresse Oxidativo/fisiologia , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Western Blotting , Camundongos , Camundongos Mutantes , Mitocôndrias/metabolismo , Nitrosação , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
J Pharmacol Exp Ther ; 355(2): 280-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26354995

RESUMO

Doxorubicin (DOX), an effective cancer chemotherapeutic agent, induces dose-dependent cardiotoxicity, in part due to its ability to cause oxidative stress. We investigated the role of multidrug resistance-associated protein 1 (Mrp1/Abcc1) in DOX-induced cardiotoxicity in C57BL wild-type (WT) mice and their Mrp1 null (Mrp1(-/-)) littermates. Male mice were administered intraperitoneal DOX (3 or 2 mg/kg body weight) or saline twice a week for 3 weeks and examined 2 weeks after the last dose (protocol A total dose: 18 mg/kg) or for 5 weeks, and mice were examined 48 hours and 2 weeks after the last dose (protocol B total dose: 20 mg/kg). Chronic DOX induced body weight loss and hemotoxicity, adverse effects significantly exacerbated in Mrp1(-/-) versus WT mice. In the heart, significantly higher basal levels of glutathione (1.41-fold ± 0.27-fold) and glutathione disulfide (1.35-fold ± 0.16-fold) were detected in Mrp1(-/-) versus WT mice, and there were comparable decreases in the glutathione/glutathione disulfide ratio in WT and Mrp1(-/-) mice after DOX administration. Surprisingly, DOX induced comparable increases in 4-hydroxynonenal glutathione conjugate concentration in hearts from WT and Mrp1(-/-) mice. However, more DOX-induced apoptosis was detected in Mrp1(-/-) versus WT hearts (P < 0.05) (protocol A), and cardiac function, assessed by measurement of fractional shortening and ejection fraction with echocardiography, was significantly decreased by DOX in Mrp1(-/-) versus WT mice (P < 0.05; 95% confidence intervals of 20.0%-24.3% versus 23.7%-29.5% for fractional shortening, and 41.5%-48.4% versus 47.7%-56.7% for ejection fraction; protocol B). Together, these data indicate that Mrp1 protects the mouse heart against chronic DOX-induced cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiotoxicidade/fisiopatologia , Doxorrubicina/toxicidade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Animais , Apoptose , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Glutationa/análogos & derivados , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Contagem de Leucócitos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Sístole , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/fisiopatologia
10.
J Pharmacol Exp Ther ; 355(2): 272-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26354996

RESUMO

Cardiotoxicity is a major dose-limiting adverse effect of doxorubicin (DOX), mediated in part by overproduction of reactive oxygen species and oxidative stress. Abcc1 (Mrp1) mediates the efflux of reduced and oxidized glutathione (GSH, GSSG) and is also a major transporter that effluxes the GSH conjugate of 4-hydroxy-2-nonenal (HNE; GS-HNE), a toxic product of lipid peroxidation formed during oxidative stress. To assess the role of Mrp1 in protecting the heart from DOX-induced cardiac injury, wild-type (WT) and Mrp1 null (Mrp1(-/-)) C57BL/6 littermate mice were administered DOX (15 mg/kg) or saline (7.5 ml/kg) i.v., and heart ventricles were examined at 72 hours. Morphometric analysis by electron microscopy revealed extensive injuries in cytosol, mitochondria, and nuclei of DOX-treated mice in both genotypes. Significantly more severely injured nuclei were observed in Mrp1(-/-) versus WT mice (P = 0.031). GSH and the GSH/GSSG ratio were significantly increased in treatment-naïve Mrp1(-/-) versus WT mice; GSH remained significantly higher in Mrp1(-/-) versus WT mice after saline and DOX treatment, with no changes in GSSG or GSH/GSSG. GS-HNE, measured by mass spectrometry, was lower in the hearts of treatment-naïve Mrp1(-/-) versus WT mice (P < 0.05). DOX treatment decreased GS-HNE in WT but not Mrp1(-/-) mice, so that GS-HNE was modestly but significantly higher in Mrp1(-/-) versus WT hearts after DOX. Expression of enzymes mediating GSH synthesis and antioxidant proteins did not differ between genotypes. Thus, despite elevated GSH levels in Mrp1(-/-) hearts, DOX induced significantly more injury in the nuclei of Mrp1(-/-) versus WT hearts.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Núcleo Celular/efeitos dos fármacos , Doxorrubicina/toxicidade , Glutationa/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Animais , Cardiotoxicidade/metabolismo , Glutationa/análogos & derivados , Dissulfeto de Glutationa/metabolismo , Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo
11.
J Clin Biochem Nutr ; 57(1): 13-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26236095

RESUMO

It has been demonstrated that cancer cells are under high levels of oxidative stress and express high levels of Manganese superoxide dismutase (MnSOD) to protect themselves and support the anabolic metabolism needed for growth and cell motility. The aim of this study was to identify proteins that may have a correlation with invasion and redox regulation by mitochondrial reactive oxygen species (ROS). MnSOD scavenges superoxide anions generated from mitochondria and is an important regulator of cellular redox status. Oxidative posttranslational modification of cysteine residues is a key mechanism that regulates protein structure and function. We hypothesized that MnSOD regulates intracellular reduced thiol status and promotes cancer invasion. A proteomic thiol-labeling approach with 5-iodoacetamidofluorescein was used to identify changes in intracellular reduced thiol-containing proteins. Our results demonstrate that overexpression of MnSOD maintained the major structural protein, actin, in a reduced state, and enhanced the invasion ability in gastric mucosal cancer cells, RGK1. We also found that the expression of Talin and S100A4 were increased in MnSOD-overexpressed RGK1 cells. Moreover, Talin bound not only with actin but also with S100A4, suggesting that the interaction of these proteins may, in part, contribute to the invasive ability of rat gastric cancer.

12.
Biomolecules ; 14(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275757

RESUMO

Questions about which reactive oxygen species (ROS) or reactive nitrogen species (RNS) can escape from the mitochondria and activate signals must be addressed. In this study, two parameters, the calculated dipole moment (debye, D) and permeability coefficient (Pm) (cm s-1), are listed for hydrogen peroxide (H2O2), hydroxyl radical (•OH), superoxide (O2•-), hydroperoxyl radical (HO2•), nitric oxide (•NO), nitrogen dioxide (•NO2), peroxynitrite (ONOO-), and peroxynitrous acid (ONOOH) in comparison to those for water (H2O). O2•- is generated from the mitochondrial electron transport chain (ETC), and several other ROS and RNS can be generated subsequently. The candidates which pass through the mitochondrial membrane include ROS with a small number of dipoles, i.e., H2O2, HO2•, ONOOH, •OH, and •NO. The results show that the dipole moment of •NO2 is 0.35 D, indicating permeability; however, •NO2 can be eliminated quickly. The dipole moments of •OH (1.67 D) and ONOOH (1.77 D) indicate that they might be permeable. This study also suggests that the mitochondria play a central role in protecting against further oxidative stress in cells. The amounts, the long half-life, the diffusion distance, the Pm, the one-electron reduction potential, the pKa, and the rate constants for the reaction with ascorbate and glutathione are listed for various ROS/RNS, •OH, singlet oxygen (1O2), H2O2, O2•-, HO2•, •NO, •NO2, ONOO-, and ONOOH, and compared with those for H2O and oxygen (O2). Molecules with negative electrical charges cannot directly diffuse through the phospholipid bilayer of the mitochondrial membranes. Short-lived molecules, such as •OH, would be difficult to contribute to intracellular signaling. Finally, HO2• and ONOOH were selected as candidates for the ROS/RNS that pass through the mitochondrial membrane.


Assuntos
Peróxido de Hidrogênio , Dióxido de Nitrogênio , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/farmacologia , Citosol , Estresse Oxidativo , Óxido Nítrico , Ácido Peroxinitroso , Oxigênio , Mitocôndrias
13.
J Neurosci ; 32(30): 10201-10, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22836255

RESUMO

Overproduction of proinflammatory cytokines in the CNS has been implicated as a key contributor to pathophysiology progression in Alzheimer's disease (AD), and extensive studies with animal models have shown that selective suppression of excessive glial proinflammatory cytokines can improve neurologic outcomes. The prior art, therefore, raises the logical postulation that intervention with drugs targeting dysregulated glial proinflammatory cytokine production might be effective disease-modifying therapeutics if used in the appropriate biological time window. To test the hypothesis that early stage intervention with such drugs might be therapeutically beneficial, we examined the impact of intervention with MW01-2-151SRM (MW-151), an experimental therapeutic that selectively attenuates proinflammatory cytokine production at low doses. MW-151 was tested in an APP/PS1 knock-in mouse model that exhibits increases in AD-relevant pathology progression with age, including increases in proinflammatory cytokine levels. Drug was administered during two distinct but overlapping therapeutic time windows of early stage pathology development. MW-151 treatment attenuated the increase in microglial and astrocyte activation and proinflammatory cytokine production in the cortex and yielded improvement in neurologic outcomes, such as protection against synaptic protein loss and synaptic plasticity impairment. The results also demonstrate that the therapeutic time window is an important consideration in efficacy studies of drugs that modulate glia biological responses involved in pathology progression and suggest that such paradigms should be considered in the development of new therapeutic regimens that seek to delay the onset or slow the progression of AD.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/tratamento farmacológico , Citocinas/biossíntese , Progressão da Doença , Piridazinas/farmacologia , Pirimidinas/farmacologia , Sinapses/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Citocinas/antagonistas & inibidores , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Sinapses/metabolismo , Sinapses/patologia
14.
Biochim Biophys Acta ; 1822(5): 794-814, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22198225

RESUMO

Increased understanding of the role of mitochondria under physiological and pathological conditions parallels increased exploration of synthetic and natural compounds able to mimic MnSOD - endogenous mitochondrial antioxidant defense essential for the existence of virtually all aerobic organisms from bacteria to humans. This review describes most successful mitochondrially-targeted redox-active compounds, Mn porphyrins and MitoQ(10) in detail, and briefly addresses several other compounds that are either catalysts of O(2)(-) dismutation, or its non-catalytic scavengers, and that reportedly attenuate mitochondrial dysfunction. While not a true catalyst (SOD mimic) of O(2)(-) dismutation, MitoQ(10) oxidizes O(2)(-) to O(2) with a high rate constant. In vivo it is readily reduced to quinol, MitoQH(2), which in turn reduces ONOO(-) to NO(2), producing semiquinone radical that subsequently dismutes to MitoQ(10) and MitoQH(2), completing the "catalytic" cycle. In MitoQ(10), the redox-active unit was coupled via 10-carbon atom alkyl chain to monocationic triphenylphosphonium ion in order to reach the mitochondria. Mn porphyrin-based SOD mimics, however, were designed so that their multiple cationic charge and alkyl chains determine both their remarkable SOD potency and carry them into the mitochondria. Several animal efficacy studies such as skin carcinogenesis and UVB-mediated mtDNA damage, and subcellular distribution studies of Saccharomyces cerevisiae and mouse heart provided unambiguous evidence that Mn porphyrins mimic the site and action of MnSOD, which in turn contributes to their efficacy in numerous in vitro and in vivo models of oxidative stress. Within a class of Mn porphyrins, lipophilic analogs are particularly effective for treating central nervous system injuries where mitochondria play key role. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.


Assuntos
Mimetismo Molecular , Superóxido Dismutase/metabolismo , Humanos , Mitocôndrias/metabolismo , Porfirinas/metabolismo , Superóxido Dismutase/química
15.
J Proteome Res ; 11(2): 1054-64, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22112237

RESUMO

Adriamycin (ADR) is a potent anticancer drug used to treat a variety of cancers. Patients treated with ADR have experienced side effects such as heart failure, cardiomyopathy, and "chemobrain", which have been correlated to changes in protein expression in the heart and brain. In order to better understand cellular responses that are disrupted following ADR treatment in immune tissues, this work focuses on spleen. Significantly reduced spleen sizes were found in ADR-treated mice. Global isotopic labeling of tryptic peptides and nanoflow reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) were employed to determine differences in the relative abundances of proteins from ADR-treated mice relative to controls. Fifty-nine proteins of the 388 unique proteins identified showed statistically significant differences in expression levels following acute ADR treatment. Differentially expressed proteins are involved in processes such as cytoskeletal structural integrity, cellular signaling and transport, transcription and translation, immune response, and Ca(2+) binding. These are the first studies to provide insight to the downstream effects of ADR treatment in a peripheral immune organ such as spleen using proteomics.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Fragmentos de Peptídeos/análise , Baço/efeitos dos fármacos , Baço/metabolismo , Animais , Anexina A2/análise , Anexina A2/metabolismo , Western Blotting , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Proteínas/análise , Proteínas/metabolismo , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Proteômica/métodos , Padrões de Referência , Transdução de Sinais/efeitos dos fármacos
16.
Pharmacogenet Genomics ; 22(4): 273-84, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22293538

RESUMO

OBJECTIVE: Doxorubicin-induced acute cardiotoxicity is associated with the Gly671Val (G671V; rs45511401) variant of multidrug resistance-associated protein 1 (MRP1). Doxorubicin redox cycling causes lipid peroxidation and generation of the reactive electrophile, 4-hydroxy-2-trans-nonenal (HNE). Glutathione forms conjugates with HNE, yielding an MRP1 substrate, GS-HNE, whose intracellular accumulation can cause toxicity. METHODS: We established stable HEK293 cell lines overexpressing wild-type MRP1 (HEKMRP1), G671V (HEKG671V), and R433S (HEKR433S), a variant not associated with doxorubicin-induced cardiotoxicity and investigated the sensitivity of HEKG671V cells to doxorubicin and transport capacity of G671V toward GS-HNE. RESULTS: In ATP-dependent transport studies using plasma membrane-derived vesicles, the Vmax (pmol/min/mg) for GS-HNE transport was the lowest for G671V (69±4) and the highest for R433S (972±213) compared with wild-type MRP1 (416±22), whereas the Km values were 2.8±0.4, 6.0 or more, and 1.7±0.2 µmol/l, respectively. In cells, the doxorubicin IC50 (48 h) was not different in HEKMRP1 (463 nmol/l) versus HEKR433S (645 nmol/l), but this parameter was significantly lower in HEKG671V (181 nmol/l). HEKG671V retained significantly (approximately 20%) more, whereas HEKR433S retained significantly less intracellular doxorubicin than HEKMRP1. Similarly, HEKG671V cells treated with 1.5 µmol/l of doxorubicin for 24 h retained significantly more GS-HNE. In cells treated with 0.5 µmol/l of doxorubicin for 48 , glutathione and glutathione disulfide levels and the glutathione/glutathione disulfide ratio were significantly decreased in HEKG671V versus HEKMRP1; these values were similar in HEKR433S versus HEKMRP1. CONCLUSION: These data suggest that decreased MRP1-dependent GS-HNE efflux contributes to increased doxorubicin toxicity in HEKG671V and potentially in individuals carrying the G671V variant.


Assuntos
Doxorrubicina/farmacocinética , Variação Genética , Glutationa/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/farmacocinética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aldeídos/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Doxorrubicina/toxicidade , Expressão Gênica , Dissulfeto de Glutationa/metabolismo , Células HEK293 , Coração/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos , Camundongos , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo
17.
J Pharmacol Exp Ther ; 341(3): 775-83, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22431205

RESUMO

We have previously shown that the bacterial enzyme thiaminase 1 has antitumor activity. In an attempt to make thiaminase I a more effective pharmaceutical agent, we have modified it by adding polyethylene glycol (PEG) chains of various lengths. We were surprised to find that 5k-PEGylation eliminated thiaminase cytotoxic activity in all cell lines tested. Both native thiaminase and 5k-PEGylated thiaminase efficiently depleted thiamine from cell culture medium, and both could use intracellular phosphorylated thiamine as substrates. However, native enzyme more effectively depleted thiamine and thiamine diphosphate in RS4 leukemia cell cytosol, and native thiaminase depressed cellular respiration, whereas PEGylated thiaminase did not. Despite the lack of in vitro cytotoxicity, PEGylation markedly increased the in vivo toxicity of the enzyme. Pharmacokinetic studies revealed that the half-life of native thiaminase was 1.5 h compared with 34.4 h for the 5k-PEGylated enzyme. Serum thiamine levels were depleted by both native and 5k-PEGylated enzyme. Despite superior pharmacokinetics, 5k-PEGylated thiaminase showed no antitumor effect against an RS4 leukemia xenograft, in contrast to native thiaminase, which showed antitumor activity. PEGylation of thiaminase I has demonstrated that depression of mitochondrial function contributes, at least in part, to its anticancer activity. PEGylation also enhances plasma retention time, which increased its vivo toxicity and decreased its activity against a leukemia xenograft, the opposite of the desired effects. These studies suggest that the mechanism of anticancer cytotoxicity of thiaminase requires acute depression of cellular respiration, whereas systemic toxicity is related to the duration of extracellular thiamine depletion.


Assuntos
Alquil e Aril Transferases/farmacologia , Antineoplásicos/farmacologia , Bacillus/enzimologia , Polietilenoglicóis/farmacologia , Tiamina/metabolismo , Alquil e Aril Transferases/farmacocinética , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Feminino , Meia-Vida , Humanos , Immunoblotting , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Polietilenoglicóis/farmacocinética
18.
Amino Acids ; 42(1): 139-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20454814

RESUMO

Manganese superoxide dismutase (MnSOD) is a nuclear-encoded antioxidant enzyme that localizes to the mitochondria. Expression of MnSOD is essential for the survival of aerobic life. Transgenic mice expressing a luciferase reporter gene under the control of the human MnSOD promoter demonstrate that the level of MnSOD is reduced prior to the formation of cancer. Overexpression of MnSOD in transgenic mice reduces the incidences and multiplicity of papillomas in a DMBA/TPA skin carcinogenesis model. However, MnSOD deficiency does not lead to enhanced tumorigenicity of skin tissue similarly treated because MnSOD can modulate both the p53-mediated apoptosis and AP-1-mediated cell proliferation pathways. Apoptosis is associated with an increase in mitochondrial levels of p53 suggesting a link between MnSOD deficiency and mitochondrial-mediated apoptosis. Activation of p53 is preventable by application of a SOD mimetic (MnTE-2-PyP(5+)). Thus, p53 translocation to mitochondria and subsequent inactivation of MnSOD explain the observed mitochondrial dysfunction that leads to transcription-dependent mechanisms of p53-induced apoptosis. Administration of MnTE-2-PyP(5+) following apoptosis but prior to proliferation leads to suppression of protein carbonyls and reduces the activity of AP-1 and the level of the proliferating cellular nuclear antigen, without reducing the activity of p53 or DNA fragmentation following TPA treatment. Remarkably, the incidence and multiplicity of skin tumors are drastically reduced in mice that receive MnTE-2-PyP(5+) prior to cell proliferation. The results demonstrate the role of MnSOD beyond its essential role for survival and suggest a novel strategy for an antioxidant approach to cancer intervention.


Assuntos
Morte , Vida , Superóxido Dismutase/metabolismo , Animais , Humanos , Superóxido Dismutase/química , Superóxido Dismutase/genética
19.
Amino Acids ; 42(1): 95-113, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20473774

RESUMO

The most efficacious Mn(III) porphyrinic (MnPs) scavengers of reactive species have positive charges close to the Mn site, whereby they afford thermodynamic and electrostatic facilitation for the reaction with negatively charged species such as O (2) (•-) and ONOO(-). Those are Mn(III) meso tetrakis(N-alkylpyridinium-2-yl)porphyrins, more specifically MnTE-2-PyP(5+) (AEOL10113) and MnTnHex-2-PyP(5+) (where alkyls are ethyl and n-hexyl, respectively), and their imidazolium analog, MnTDE-2-ImP(5+) (AEOL10150, Mn(III) meso tetrakis(N,N'-diethylimidazolium-2-yl) porphyrin). The efficacy of MnPs in vivo is determined not only by the compound antioxidant potency, but also by its bioavailability. The former is greatly affected by the lipophilicity, size, structure, and overall shape of the compound. These porphyrins have the ability to both eliminate reactive oxygen species and impact the progression of oxidative stress-dependent signaling events. This will effectively lead to the regulation of redox-dependent transcription factors and the suppression of secondary inflammatory- and oxidative stress-mediated immune responses. We have reported on the inhibition of major transcription factors HIF-1α, AP-1, SP-1, and NF-κB by Mn porphyrins. While the prevailing mechanistic view of the suppression of transcription factors activation is via antioxidative action (presumably in cytosol), the pro-oxidative action of MnPs in suppressing NF-κB activation in nucleus has been substantiated. The magnitude of the effect is dependent upon the electrostatic (porphyrin charges) and thermodynamic factors (porphyrin redox ability). The pro-oxidative action of MnPs has been suggested to contribute at least in part to the in vitro anticancer action of MnTE-2-PyP(5+) in the presence of ascorbate, and in vivo when combined with chemotherapy of lymphoma. Given the remarkable therapeutic potential of metalloporphyrins, future studies are warranted to further our understanding of in vivo action/s of Mn porphyrins, particularly with respect to their subcellular distribution.


Assuntos
Manganês/metabolismo , Metaloporfirinas/metabolismo , Metaloporfirinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Animais , Humanos , Manganês/química , Metaloporfirinas/química , Oxirredução/efeitos dos fármacos
20.
Antioxidants (Basel) ; 11(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35740091

RESUMO

Oxidative stress plays a significant role in cancer development and cancer therapy, and is a major contributor to normal tissue injury. The unique characteristics of extracellular vesicles (EVs) have made them potentially useful as a diagnostic tool in that their molecular content indicates their cell of origin and their lipid membrane protects the content from enzymatic degradation. In addition to their possible use as a diagnostic tool, their role in how normal and diseased cells communicate is of high research interest. The most exciting area is the association of EVs, oxidative stress, and pathogenesis of numerous diseases. However, the relationship between oxidative stress and oxidative modifications of EVs is still unclear, which limits full understanding of the clinical potential of EVs. Here, we discuss how EVs, oxidative stress, and cancer therapy relate to one another; how oxidative stress can contribute to the generation of EVs; and how EVs' contents reveal the presence of oxidative stress. We also point out the potential promise and limitations of using oxidatively modified EVs as biomarkers of cancer and tissue injury with a focus on pediatric oncology patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA