RESUMO
We propose an acceleration scheme for many-body dynamic collision detection at interactive rates. We use the Velocity-Aligned Discrete Oriented Politope (VADOP), a tight bounding volume representation that offers fast update rates and which is particularly suitable for applications with many fast-moving objects. The axes selection that determines the shape of our bounding volumes is based on spherical coverings. We demonstrate that we can robustly detect collisions that are missed by pseudo-dynamic collision detection schemes, with even greater performance due to substantial collision pruning by our bounding volumes.
Assuntos
Algoritmos , Gráficos por Computador , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Interface Usuário-Computador , Inteligência Artificial , Simulação por Computador , Modelos Teóricos , Movimento (Física) , Análise Numérica Assistida por Computador , Processamento de Sinais Assistido por ComputadorRESUMO
BACKGROUND: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. RESULTS: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. CONCLUSION: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.