Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Respir Res ; 25(1): 211, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762736

RESUMO

BACKGROUND: Bronchiectasis is a condition characterized by abnormal and irreversible bronchial dilation resulting from lung tissue damage and can be categorized into two main groups: cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). Both diseases are marked by recurrent infections, inflammatory exacerbations, and lung damage. Given that infections are the primary drivers of disease progression, characterization of the respiratory microbiome can shed light on compositional alterations and susceptibility to antimicrobial drugs in these cases compared to healthy individuals. METHODS: To assess the microbiota in the two studied diseases, 35 subjects were recruited, comprising 10 NCFB and 13 CF patients and 12 healthy individuals. Nasopharyngeal swabs and induced sputum were collected, and total DNA was extracted. The DNA was then sequenced by the shotgun method and evaluated using the SqueezeMeta pipeline and R. RESULTS: We observed reduced species diversity in both disease cohorts, along with distinct microbial compositions and profiles of antimicrobial resistance genes, compared to healthy individuals. The nasopharynx exhibited a consistent microbiota composition across all cohorts. Enrichment of members of the Burkholderiaceae family and an increased Firmicutes/Bacteroidetes ratio in the CF cohort emerged as key distinguishing factors compared to NCFB group. Staphylococcus aureus and Prevotella shahii also presented differential abundance in the CF and NCFB cohorts, respectively, in the lower respiratory tract. Considering antimicrobial resistance, a high number of genes related to antibiotic efflux were detected in both disease groups, which correlated with the patient's clinical data. CONCLUSIONS: Bronchiectasis is associated with reduced microbial diversity and a shift in microbial and resistome composition compared to healthy subjects. Despite some similarities, CF and NCFB present significant differences in microbiome composition and antimicrobial resistance profiles, suggesting the need for customized management strategies for each disease.


Assuntos
Bronquiectasia , Fibrose Cística , Microbiota , Humanos , Bronquiectasia/microbiologia , Bronquiectasia/tratamento farmacológico , Bronquiectasia/diagnóstico , Fibrose Cística/microbiologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/diagnóstico , Masculino , Feminino , Microbiota/fisiologia , Microbiota/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade , Escarro/microbiologia , Adulto Jovem , Estudos de Coortes , Idoso
2.
Genet Mol Biol ; 47(2): e20230320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39093931

RESUMO

Free-living amoebas are natural predators of fungi, including human pathogens of the Cryptococcus genus. To survive and proliferate inside phagocytes, cryptococcal cells must acquire several nutrients. Zinc is fundamental for all life forms and develops a crucial role in the virulence of fungal pathogens, phagocytes reduce the availability of this metal to reduce the development of infection. The Acanthamoeba castellanii ACA1_271600 gene codes a metal transporter that is possibly associated with such antifungal strategy. Here, we evaluated the impact of A. castellanii metal homeostasis on C. gattii survival. Gene silencing of ACA1_271600 was performed and the interaction outcome of amoeba cells with both WT and zinc homeostasis-impaired mutant cryptococcal cells was evaluated. Decreased levels of ACA1_271600 in silenced amoeba cells led to higher proliferation of such cryptococcal strains. This effect was more pronounced in the zip1 mutant of C. gattii, suggesting that ACA1_271600 gene product modulates metal availability in Cryptococcus-infected amoebae. In addition, a systems biology analysis allowed us to infer that ACA1_271600 may also be involved in other biological processes that could compromise amoebae activity over cryptococcal cells. These results support the hypothesis that A. castellanii can apply nutritional immunity to hamper cryptococcal survival.

3.
Arch Virol ; 168(3): 83, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757570

RESUMO

Here, we report the occurrence and complete genome sequence of a novel victorivirus infecting Metarhizium anisopliae, named "Metarhizium anisopliae victorivirus 1" (MaVV1). The genome is 5353 bp in length and contains two open reading frames (ORFs), encoding a coat protein and an RNA-dependent RNA polymerase (RdRp), that overlap at the octanucleotide sequence AUGAGUAA. These ORFs showed sequence similarity to the corresponding ORFs of Ustilaginoidea virens RNA virus L (68.23%) and Ustilaginoidea virens RNA virus 13 (58.11%), respectively, both of which belong to the family Totiviridae. Phylogenetic analysis based on RdRp sequences revealed that MaVV1 clustered with members of the genus Victorivirus. This is the first genome sequence reported for a virus belonging to the genus Victorivirus infecting the entomopathogenic fungus M. anisopliae.


Assuntos
Genoma Viral , Metarhizium , Totiviridae , Genoma Viral/genética , Metarhizium/genética , Metarhizium/virologia , Fases de Leitura Aberta , Filogenia , RNA de Cadeia Dupla , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Totiviridae/genética
4.
Fungal Genet Biol ; 159: 103675, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35183746

RESUMO

Species from the Metarhizium genus are the causal agents of the green muscardine disease of insects. These fungi have been successfully employed for the biological control of pests over decades. Besides the biocontrol applications, recent efforts for genome sequencing of species in this genus have revealed a great diversity of biosynthetic gene clusters potentially associated with secondary metabolite synthesis. Amongst such molecules are the pseurotins, compounds with several activities, as chitin synthase inhibitors, and immunoglobulin E suppressors. Here, we report, for the first time, the isolation of pseurotin A from the culture broth of M. anisopliae, as well as the characterization of the effects of this compound over the model-arthropod Galleria mellonella. Pseurotin A displayed dose-dependent reversible paralysis effects when injected into the larvae hemocoel. However, the posterior challenge of the treated insects with M. anisopliae conidia did not lead to increased mortality, suggesting that pseurotin A treatment did not increase larvae susceptibility to the green muscardine disease. Although apparent insecticidal effects were not observed for pseurotin A, the paralysis effect observed can be important in M. anisopliae infection development.


Assuntos
Metarhizium , Mariposas , Animais , Larva , Metarhizium/genética , Pirrolidinonas
5.
Genomics ; 113(2): 805-814, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33529779

RESUMO

Cryptococcus gattii is one of the causes of cryptococcosis, a life-threatening disease generally characterized by pneumonia and/or meningitis. Zinc is an essential element for life, being required for the activity of many proteins with catalytic and structural roles. Here, we characterize ZRG1 (zinc-related gene 1), which codes a product involved in zinc metabolism. Transcriptional profiling revealed that zinc availability regulated the expression of ZRG1, and its null mutants demonstrated impaired growth in zinc- and nitrogen-limiting conditions. Moreover, zrg1 strains displayed alterations in the expression of the zinc homeostasis-related genes ZAP1 and ZIP1. Notably, cryptococcal cells lacking Zrg1 displayed upregulation of autophagy-like phenotypes. Despite no differences were detected in the classical virulence-associated traits; cryptococcal cells lacking ZRG1 displayed decreased capacity for survival inside macrophages and attenuated virulence in an invertebrate model. Together, these results indicate that ZRG1 plays an important role in proper zinc metabolism, and is necessary for cryptococcal fitness and virulence.


Assuntos
Proteínas de Transporte de Cátions/genética , Cryptococcus gattii/genética , Proteínas Fúngicas/genética , Animais , Autofagia , Proteínas de Transporte de Cátions/metabolismo , Cryptococcus gattii/metabolismo , Cryptococcus gattii/patogenicidade , Proteínas Fúngicas/metabolismo , Camundongos , Mutação , Células RAW 264.7 , Zinco/metabolismo
6.
Fungal Genet Biol ; 152: 103568, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33991663

RESUMO

Metarhizium anisopliae is an important entomopathogenic species and model for arthropod-fungus interaction studies. This fungus harbors a diverse arsenal of unexplored secondary metabolite biosynthetic gene clusters, which are suggested to perform diverse roles during host interaction and soil subsistence as a saprophytic species. Here we explored an unusual carnitine acyltransferase domain-containing highly reducing polyketide synthase found in the genome of M. anisopliae. Employing heterologous expression in Aspergillus nidulans, two new polyketides were obtained, named BAA and BAB, as well as one known polyketide [(2Z,4E,6E)-octa-2,4,6-trienedioic acid]. Intra-hemocoel injection of the most abundant compound (BAA) in the model-arthropod Galleria mellonella larvae did not induce mortality or noticeable alterations, suggesting that this compound may not harbor insecticidal activity. Also, the potential role of such molecules in polymicrobial interactions was evaluated. Determination of minimum inhibitory concentration assays using distinct fungal species revealed that BAA and BAB did not alter Cryptococcus neoformans growth, while BAA exhibited weak antifungal activity against Saccharomyces cerevisiae. Unexpectedly, these compounds increased Candida albicans growth compared to control conditions. Furthermore, BAA can mitigate the fungicidal effects of fluconazole over C. albicans. Although the exact role of these compounds on the M. anisopliae life cycle is elusive, the described results add up to the complexity of secondary metabolites produced by Metarhizium spp. Moreover, up to our knowledge, these are the first polyketides isolated from filamentous fungi that can boost the growth of another fungal species.


Assuntos
Vias Biossintéticas/genética , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Metarhizium/genética , Metarhizium/metabolismo , Policetídeos/metabolismo , Policetídeos/farmacologia , Animais , Antifúngicos , Aspergillus nidulans/genética , Fungos/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Larva/microbiologia , Interações Microbianas/fisiologia , Testes de Sensibilidade Microbiana , Mariposas , Família Multigênica , Policetídeos/química , Policetídeos/isolamento & purificação , Metabolismo Secundário/genética
7.
Genet Mol Biol ; 44(3): e20210073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34606563

RESUMO

Filamentous fungi are the organisms of choice for most industrial biotechnology. Some species can produce a variety of secondary metabolites and enzymes of commercial interest, and the production of valuable molecules has been enhanced through different molecular tools. Methods for genetic manipulation and transformation have been essential for the optimization of these organisms. The genus Simplicillium has attracted increased attention given several potential biotechnological applications. The Simplicillium genus harbors several entomopathogenic species and some isolates have been explored for bioremediation of heavy metal contaminants. Furthermore, the myriad of secondary metabolites isolated from Simplicillium spp. render these organisms as ideal targets for deep exploration and further biotechnological mining possibilities. However, the lack of molecular tools hampered the exploration of this genus. Thus, an Agrobacterium tumefaciens-mediated transformation method was established for Simplicillium subtropicum, employing the far-red fluorescent protein TURBOFP635/Katushka, as a visual marker, and the selection marker SUR gene, that confers resistance to chlorimuron ethyl. Notably, one round of transformation using the established method yielded almost 400 chlorimuron resistant isolates. Furthermore, these transformants displayed mitotic stability for, at least, five generations. We anticipate that this method can be useful for deep molecular exploration and improvement of strains in the Simplicillium genus.

8.
Fungal Genet Biol ; 144: 103438, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32738289

RESUMO

Cryptococcus gattii is an etiologic agent of cryptococcosis, a potentially fatal disease that affects humans and animals. The successful infection of mammalian hosts by cryptococcal cells relies on their ability to infect and survive in macrophages. Such phagocytic cells present a hostile environment to intracellular pathogens via the production of reactive nitrogen and oxygen species, as well as low pH and reduced nutrient bioavailability. To overcome the low-metal environment found during infection, fungal pathogens express high-affinity transporters, including members of the ZIP family. Previously, we determined that functional zinc uptake driven by Zip1 and Zip2 is necessary for full C.gattiivirulence. Here, we characterized the ZIP3 gene of C. gattii, an ortholog of the Saccharomyces cerevisiae ATX2, which codes a manganese transporter localized to the membrane of the Golgi apparatus. Cryptococcal cells lacking Zip3 were tolerant to toxic concentrations of manganese and had imbalanced expression of intracellular metal transporters, such as the vacuolar Pmc1 and Vcx1, as well as the Golgi Pmr1. Moreover, null mutants of the ZIP3 gene displayed higher sensitivity to reactive oxygen species (ROS) and substantial alteration in the expression of ROS-detoxifying enzyme-coding genes. In line with these phenotypes, cryptococcal cells displayed decreased virulence in a non-vertebrate model of cryptococcosis. Furthermore, we found that the ZIP3 null mutant strain displayed decreased melanization and secretion of the major capsular component glucuronoxylomannan, as well as an altered extracellular vesicle dimensions profile. Collectively, our data suggest that Zip3 activity impacts the physiology, and consequently, several virulence traits of C. gattii.


Assuntos
Proteínas de Transporte de Cátions/genética , Cryptococcus gattii/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Animais , Criptococose/genética , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus gattii/metabolismo , Cryptococcus gattii/patogenicidade , Humanos , Macrófagos/metabolismo , Manganês/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Virulência/genética
9.
BMC Genomics ; 20(1): 836, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711419

RESUMO

BACKGROUND: The Metarhizium genus harbors important entomopathogenic fungi. These species have been widely explored as biological control agents, and strategies to improve the fungal virulence are under investigation. Thus, the interaction between Metarhizium species and susceptible hosts have been explored employing different methods in order to characterize putative virulence determinants. However, the impact of epigenetic modulation on the infection cycle of Metarhizium is still an open topic. Among the different epigenetic modifications, DNA methylation of cytosine bases is an important mechanism to control gene expression in several organisms. To better understand if DNA methylation can govern Metarhizium-host interactions, the genome-wide DNA methylation profile of Metarhizium anisopliae was explored in two conditions: tick mimicked infection and a saprophytic-like control. RESULTS: Using a genome wide DNA methylation profile based on bisulfite sequencing (BS-Seq), approximately 0.60% of the total cytosines were methylated in saprophytic-like condition, which was lower than the DNA methylation level (0.89%) in tick mimicked infection condition. A total of 670 mRNA genes were found to be putatively methylated, with 390 mRNA genes uniquely methylated in the tick mimicked infection condition. GO terms linked to response to stimuli, cell wall morphogenesis, cytoskeleton morphogenesis and secondary metabolism biosynthesis were over-represented in the tick mimicked infection condition, suggesting that energy metabolism is directed towards the regulation of genes associated with infection. However, recognized virulence determinants known to be expressed at distinct infection steps, such as the destruxin backbone gene and the collagen-like protein gene Mcl1, were found methylated, suggesting that a dynamic pattern of methylation could be found during the infectious process. These results were further endorsed employing RT-qPCR from cultures treated or not with the DNA methyltransferase inhibitor 5-Azacytidine. CONCLUSIONS: The set of genes here analyzed focused on secondary metabolites associated genes, known to be involved in several processes, including virulence. The BS-Seq pipeline and RT-qPCR analysis employing 5-Azacytidine led to identification of methylated virulence genes in M. anisopliae. The results provided evidences that DNA methylation in M. anisopliae comprises another layer of gene expression regulation, suggesting a main role of DNA methylation regulating putative virulence determinants during M. anisopliae infection cycle.


Assuntos
Metilação de DNA , Metarhizium/genética , Carrapatos/microbiologia , Animais , Genoma Fúngico , Metarhizium/metabolismo , Metarhizium/patogenicidade , RNA-Seq , Metabolismo Secundário , Virulência
10.
Genet Mol Biol ; 41(4): 843-857, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534852

RESUMO

Cell walls are involved in manifold aspects of fungi maintenance. For several fungi, chitin synthesis, degradation and recycling are essential processes required for cell wall biogenesis; notably, the activity of ß-N-acetylglucosaminidases (NAGases) must be present for chitin utilization. For entomopathogenic fungi, such as Metarhizium anisopliae, chitin degradation is also used to breach the host cuticle during infection. In view of the putative role of NAGases as virulence factors, this study explored the transcriptional profile and evolution of putative GH20 NAGases (MaNAG1 and MaNAG2) and GH3 NAGases (MaNAG3 and MaNAG4) identified in M. anisopliae. While MaNAG2 orthologs are conserved in several ascomycetes, MaNAG1 clusters only with Aspergilllus sp. and entomopathogenic fungal species. By contrast, MaNAG3 and MaNAG4 were phylogenetically related with bacterial GH3 NAGases. The transcriptional profiles of M. anisopliae NAGase genes were evaluated in seven culture conditions showing no common regulatory patterns, suggesting that these enzymes may have specific roles during the Metarhizium life cycle. Moreover, the expression of MaNAG3 and MaNAG4 regulated by chitinous substrates is the first evidence of the involvement of putative GH3 NAGases in physiological cell processes in entomopathogens, indicating their potential influence on cell differentiation during the M. anisopliae life cycle.

11.
BMC Genomics ; 18(1): 294, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28403818

RESUMO

BACKGROUND: The absence of Argonaute genes in the fungal pathogen Cryptococcus gattii R265 and other VGII strains indicates that yeasts of this genotype cannot have a functional RNAi pathway, an evolutionarily conserved gene silencing mechanism performed by small RNAs. The success of the R265 strain as a pathogen that caused the Pacific Northwest and Vancouver Island outbreaks may imply that RNAi machinery loss could be beneficial under certain circumstances during evolution. As a result, a hypermutant phenotype would be created with high rates of genome retrotransposition, for instance. This study therefore aimed to evaluate in silicio the effect of retrotransposons and their control mechanisms by small RNAs on genomic stability and synteny loss of C. gattii R265 through retrotransposons sequence comparison and orthology analysis with other 16 C. gattii genomic sequences available. RESULTS: Retrotransposon mining identified a higher sequence count to VGI genotype compared to VGII, VGIII, and VGIV. However, despite the lower retrotransposon number, VGII exhibited increased synteny loss and genome rearrangement events. RNA-Seq analysis indicated highly expressed retrotransposons as well as sRNA production. CONCLUSIONS: Genome rearrangement and synteny loss may suggest a greater retrotransposon mobilization caused by RNAi pathway absence, but the effective presence of sRNAs that matches retrotransposon sequences means that an alternative retrotransposon silencing mechanism could be active in genomic integrity maintenance of C. gattii VGII strains.


Assuntos
Cryptococcus gattii/genética , RNA Interferente Pequeno/genética , Retroelementos , Análise de Sequência de RNA/métodos , Evolução Biológica , Simulação por Computador , Genótipo , Filogenia , RNA Fúngico/genética , Deleção de Sequência , Sintenia
12.
BMC Genomics ; 15: 822, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25263348

RESUMO

BACKGROUND: Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins. RESULTS: We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity. CONCLUSIONS: The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Metarhizium/genética , Animais , Hibridização Genômica Comparativa , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Metarhizium/classificação , Filogenia , Rhipicephalus/metabolismo , Rhipicephalus/microbiologia , Análise de Sequência de RNA
13.
J Proteome Res ; 11(1): 189-205, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21970549

RESUMO

Iron is essential and ubiquitous in living organisms. The competition for this micronutrient between the host and its pathogens has been related to disease establishment. Cryptococcus gattii is an encapsulated yeast that causes cryptococcosis mainly in immunocompetent individuals. In this study, we analyzed the proteomic profile of the C. gattii R265 Vancouver Island isolate under iron-depleted and -repleted conditions by multidimensional protein identification technology (MudPIT) and by 2D-GE. Proteins and key mechanisms affected by alteration of iron levels such as capsule production, cAMP-signaling pathway, response to stress, and metabolic pathways related to mitochondrial function were identified. Our results also show both proteomic methodologies employed to be complementary.


Assuntos
Cryptococcus gattii/metabolismo , Proteínas Fúngicas/metabolismo , Ferro/fisiologia , Proteoma/metabolismo , Vias Biossintéticas , Cryptococcus gattii/genética , Cryptococcus gattii/crescimento & desenvolvimento , Eletroforese em Gel Bidimensional , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Anotação de Sequência Molecular , Proteoma/classificação , Proteoma/genética , Proteômica
14.
Fungal Genet Biol ; 48(2): 192-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20673806

RESUMO

Nitrogen uptake and metabolism are essential to microbial growth. Gat1 belongs to a conserved family of zinc finger containing transcriptional regulators known as GATA-factors. These factors activate the transcription of Nitrogen Catabolite Repression (NCR) sensitive genes when preferred nitrogen sources are absent or limiting. Cryptococcus neoformans GAT1 is an ortholog to the Aspergillus nidulans AreA and Candida albicans GAT1 genes. In an attempt to define the function of this transcriptional regulator in C. neoformans, we generated null mutants (gat1Δ) of this gene. The gat1 mutant exhibited impaired growth on all amino acids tested as sole nitrogen sources, with the exception of arginine and proline. Furthermore, the gat1 mutant did not display resistance to rapamycin, an immunosuppressant drug that transiently mimics a low-quality nitrogen source. Gat1 is not required for C. neoformans survival during macrophage infection or for virulence in a mouse model of cryptococcosis. Microarray analysis allowed the identification of target genes that are regulated by Gat1 in the presence of proline, a poor and non-repressing nitrogen source. Genes involved in ergosterol biosynthesis, iron uptake, cell wall organization and capsule biosynthesis, in addition to NCR-sensitive genes, are Gat1-regulated in C. neoformans.


Assuntos
Cryptococcus neoformans/fisiologia , Proteínas Fúngicas/metabolismo , Fatores de Transcrição GATA/metabolismo , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Transativadores/metabolismo , Animais , Aspergillus nidulans/genética , Candida albicans/genética , Criptococose/microbiologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Fatores de Transcrição GATA/genética , Deleção de Genes , Perfilação da Expressão Gênica , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Análise em Microsséries , Regulon , Homologia de Sequência de Aminoácidos , Análise de Sobrevida , Transativadores/genética , Virulência , Dedos de Zinco
15.
Eukaryot Cell ; 9(11): 1798-805, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20889719

RESUMO

Cryptococcus neoformans is an encapsulated yeast that causes a life-threatening meningoencephalitis in immunocompromised individuals. The ability to survive and proliferate at the human body temperature is an essential virulence attribute of this pathogen. This trait is controlled in part by the Ca²(+)-calcineurin pathway, which senses and utilizes cytosolic calcium for signaling. In the present study, the identification of the C. neoformans gene VCX1, which encodes a vacuolar calcium exchanger, is reported. The VCX1 knockout results in hypersensitivity to the calcineurin inhibitor cyclosporine A at 35°C, but not at 30°C. Furthermore, high concentrations of CaCl2 lead to growth inhibition of the vcx1 mutant strain only in the presence of cyclosporine A, indicating that Vcx1 acts in parallel with calcineurin. The loss of VCX1 does not influence cell wall integrity or capsule size but decreases secretion of the major capsular polysaccharide glucuronoxylomannan (GXM) in culture supernatants.Vcx1 also influences C. neoformans phagocytosis by murine macrophages and is required for full virulence in mice. Analysis of cellular distribution by confocal microscopy confirmed the vacuolar localization of Vcx1 in C. neoformans cells.


Assuntos
Antiporters/metabolismo , Cálcio/metabolismo , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/metabolismo , Animais , Antiporters/genética , Calcineurina/metabolismo , Linhagem Celular , Criptococose/etiologia , Cryptococcus neoformans/genética , Feminino , Proteínas Fúngicas/genética , Deleção de Genes , Genes Fúngicos , Teste de Complementação Genética , Humanos , Técnicas In Vitro , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fagocitose , Filogenia , Transdução de Sinais , Vacúolos/metabolismo , Virulência/genética , Virulência/fisiologia
16.
Fungal Biol ; 125(5): 389-399, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33910680

RESUMO

Small RNAs (sRNAs) are key factors in the regulation of gene expression. Recently, a new class of regulatory sRNAs derived from tRNAs was described, the tRNA-derived RNA fragments (tRFs). Such RNAs range in length from 14 to 30 nucleotides and are produced from both mature and primary tRNA transcripts, with very specific cleavage sites along the tRNA sequence. Although several mechanisms have been proposed for how tRFs mediate regulation of gene expression, the exact mechanism of tRF biogenesis and its dependency upon the RNAi pathway remain unclear. Cryptococcus gattii and Cryptococcus neoformans are basidiomycetous yeasts and important human pathogens. While C. neoformans is RNAi proficient, C. gattii VGII has lost essential RNAi genes. Here, we sought to identify the tRF production profile in C. gattii VGII and C. neoformans in order to assess the RNAi-dependency of tRF production in these fungal species. We developed a RNA-sequencing-based tRF prediction workflow designed to improve the currently available prediction tools. Using this methodology, we were able to identify tRFs in both organisms. Despite the loss of the RNAi pathway, C. gattii VGII displayed a number of identified tRFs that did not differ significantly from those observed in C. neoformans. The analysis of predicted tRF targets revealed that a higher number of targets was found for C. gattii VGII tRFs compared to C. neoformans tRFs. These results support the idea that tRFs are at least partially independent of the canonical RNAi machinery, raising questions about possible compensatory roles of alternative regulatory RNAs in the absence of a functional RNAi pathway.


Assuntos
Cryptococcus gattii , Cryptococcus neoformans , Cryptococcus neoformans/genética , Genótipo , RNA , Interferência de RNA , RNA de Transferência/genética
17.
FEMS Microbiol Lett ; 368(12)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34100915

RESUMO

The first line of the Arthropods defense against infections is the hard-structured exoskeleton, a physical barrier, usually rich in insoluble chitin. For entomopathogenic fungi that actively penetrate the host body, an arsenal of hydrolytic enzymes (as chitinases and N-acetylglucosaminidases), that break down chitin, is essential. Notably, twenty-one putative chitinase genes have been identified in the genome of Metarhizium anisopliae, a generalist entomopathogenic fungus. As a multigenic family, with enzymes that, presumably, perform redundant functions, the main goal is to understand the singularity of each one of such genes and to discover their precise role in the fungal life cycle. Specially chitinases that can act as virulence determinants are of interest since these enzymes can lead to more efficient biocontrol agents. Here we explored a horizontally acquired chitinase from M. anisopliae, named chiMaD1. The deletion of this gene did not lead to phenotypic alterations or diminished supernatant's chitinolytic activity. Surprisingly, chiMaD1 deletion enhanced M. anisopliae virulence to the cattle tick (Rhipicephalus microplus) larvae and engorged females, while did not alter the virulence to the mealworm larvae (Tenebrio molitor). These results add up to recent reports of deleted genes that enhanced entomopathogenic virulence, showing the complexity of host-pathogen interactions.


Assuntos
Quitinases/genética , Proteínas Fúngicas/genética , Metarhizium/patogenicidade , Rhipicephalus/microbiologia , Animais , Quitina/metabolismo , Quitinases/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Transferência Genética Horizontal , Interações Hospedeiro-Patógeno , Larva/microbiologia , Metarhizium/classificação , Metarhizium/enzimologia , Metarhizium/genética , Controle Biológico de Vetores , Filogenia , Tenebrio/microbiologia , Virulência
18.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585873

RESUMO

Evaluating the quality of a de novo annotation of a complex fungal genome based on RNA-seq data remains a challenge. In this study, we sequentially optimized a Cufflinks-CodingQuary-based bioinformatics pipeline fed with RNA-seq data using the manually annotated model pathogenic yeasts Cryptococcus neoformans and Cryptococcus deneoformans as test cases. Our results show that the quality of the annotation is sensitive to the quantity of RNA-seq data used and that the best quality is obtained with 5-10 million reads per RNA-seq replicate. We also showed that the number of introns predicted is an excellent a priori indicator of the quality of the final de novo annotation. We then used this pipeline to annotate the genome of the RNAi-deficient species Cryptococcus deuterogattii strain R265 using RNA-seq data. Dynamic transcriptome analysis revealed that intron retention is more prominent in C. deuterogattii than in the other RNAi-proficient species C. neoformans and C. deneoformans. In contrast, we observed that antisense transcription was not higher in C. deuterogattii than in the two other Cryptococcus species. Comparative gene content analysis identified 21 clusters enriched in transcription factors and transporters that have been lost. Interestingly, analysis of the subtelomeric regions in these three annotated species identified a similar gene enrichment, reminiscent of the structure of primary metabolic clusters. Our data suggest that there is active exchange between subtelomeric regions, and that other chromosomal regions might participate in adaptive diversification of Cryptococcus metabolite assimilation potential.


Assuntos
Cryptococcus neoformans , Genoma Fúngico , Cryptococcus neoformans/genética , Genômica , Anotação de Sequência Molecular , Família Multigênica , Interferência de RNA
19.
Eur J Pharm Sci ; 162: 105816, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33757827

RESUMO

Cryptococcus neoformans is the etiological agent of cryptococcal meningoencephalitis. The recommended available treatment has low efficiency, with high toxicity and resistance as recurrent problems. In the search of new treatment protocols, the proposal of new pharmacological approaches is considered an innovative strategy, mainly nanotechnological systems considering fungal diseases. The antiarrhythmic drug amiodarone has demonstrated antifungal activity against a range of fungi, including C. neoformans. Here, considering the importance of calcium storage mediated by transporters on cryptococcal virulence, we evaluated the use of the calcium channel blocker amiodarone as an alternative therapy for cryptococcosis. C. neoformans displayed high sensitivity to amiodarone, which was also synergistic with fluconazole. Amiodarone treatment influenced some virulence factors, interrupting the calcium-calcineurin signaling pathway. Experiments with murine cryptococcosis models revealed that amiodarone treatment increased the fungal burden in the lungs, while its combination with fluconazole did not improve treatment compared to fluconazole alone. In addition, we have developed different innovative nanotechnological formulations, one of which combining two drugs with different mechanisms of action. Lipid-core nanocapsules (LNC) loaded with amiodarone (LNCAMD), fluconazole (LNCFLU) and both (LNCAMD+FLU) were produced to achieve a better efficacy in vivo. In an intranasal model of treatment, all the LNC formulations had an antifungal effect. In an intraperitoneal treatment, LNCAMD showed an enhanced anticryptococcal effect compared to the free drug, whereas LNCFLU or LNCAMD+FLU displayed no differences from the free drugs. In this way, nanotechnology using amiodarone formulations could be an effective therapy for cryptococcal infections.


Assuntos
Amiodarona , Criptococose , Nanocápsulas , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Criptococose/tratamento farmacológico , Fluconazol/uso terapêutico , Lipídeos/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Nanocápsulas/uso terapêutico , Nanotecnologia
20.
Anim Microbiome ; 3(1): 51, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321106

RESUMO

BACKGROUND: Papillomaviruses are small nonenveloped, circular double-stranded DNA viruses that belong to the Papillomaviridae family. To date, 29 Bos taurus papillomavirus (BPV) types have been described. Studies involving mixed BPV infections have rarely been reported in contrast to human papillomavirus (HPV), which is commonly described in numerous studies showing coinfections. Moreover, previous studies had shown that HPV coinfections increase the risk of carcinogenesis. In the present study, we used rolling-circle amplification followed by a high-throughput sequencing (RCA-HTS) approach in 23 teat papillomas from southern Brazil. RESULTS: Eleven well-characterized BPV types and 14 putative new BPV types were genetically characterized into the Xi, Epsilon and Dyoxipapillomavirus genera according to phylogenetic analysis of the L1 gene, which expands the previous 29 BPV types to 43. Moreover, BPV coinfections were detected in the majority (56.3%) of the papilloma lesions analyzed, suggesting a genetic diverse "papillomavirome" in bovine teat warts. CONCLUSIONS: The data generated in this study support the possibility that a wide range of BPV is probably underdetected by conventional molecular detection tools, and that BPV coinfections are underestimated and probably genetic diverse. Additionally, 14 new BPV types were characterized, increasing the knowledge regarding BPV genetic diversity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA