Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 83: 129177, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764468

RESUMO

Based on a hit from a high-throughput screen, a series of phenyltetrazole amides was synthesized and assayed for inhibitory potency against DapE from Haemophilus influenzae (HiDapE). The inhibitory potency was modest but confirmed, with the most potent analog containing an aminothiazole moiety displaying an IC50 = 50.2 ± 5.0 µM. Docking reveals a potential binding mode wherein the amide carbonyl bridges both zinc atoms in the active site, and the tetrazole forms key hydrogen bonds with Arg330.


Assuntos
Antibacterianos , Zinco , Antibacterianos/farmacologia , Domínio Catalítico , Ácido Diaminopimélico/química , Ácido Diaminopimélico/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Zinco/química , Tetrazóis/química
2.
Biochemistry ; 57(5): 574-584, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29272107

RESUMO

The X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ∼50° and shifts ∼10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclear Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a µ-1,3 fashion forming a bis(µ-carboxylato)dizinc(II) core with a Zn-Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ∼10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ∼10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. These data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Haemophilus influenzae/enzimologia , Amidoidrolases/genética , Amidoidrolases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Ácido Diaminopimélico/metabolismo , Dimerização , Haemophilus influenzae/genética , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Neisseria meningitidis/enzimologia , Neisseria meningitidis/genética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Rotação , Especificidade por Substrato , Ácido Succínico/metabolismo , Zinco/química
3.
Biochemistry ; 54(31): 4834-44, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26186504

RESUMO

Binding of the competitive inhibitor L-captopril to the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Neisseria meningitidis (NmDapE) was examined by kinetic, spectroscopic, and crystallographic methods. L-Captopril, an angiotensin-converting enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor of the DapE from Haemophilus influenzae (HiDapE) with an IC50 of 3.3 µM and a measured Ki of 1.8 µM and displayed a dose-responsive antibiotic activity toward Escherichia coli. L-Captopril is also a competitive inhibitor of NmDapE with a Ki of 2.8 µM. To examine the nature of the interaction of L-captopril with the dinuclear active site of DapE, we have obtained electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) data for the enzymatically hyperactive Co(II)-substituted forms of both HiDapE and NmDapE. EPR and MCD data indicate that the two Co(II) ions in DapE are antiferromagnetically coupled, yielding an S = 0 ground state, and suggest a thiolate bridge between the two metal ions. Verification of a thiolate-bridged dinuclear complex was obtained by determining the three-dimensional X-ray crystal structure of NmDapE in complex with L-captopril at 1.8 Å resolution. Combination of these data provides new insights into binding of L-captopril to the active site of DapE enzymes as well as important inhibitor-active site residue interaction's. Such information is critical for the design of new, potent inhibitors of DapE enzymes.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Proteínas de Bactérias , Captopril/química , Liases , Neisseria meningitidis/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Liases/antagonistas & inibidores , Liases/química
4.
JAMA Oncol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842838

RESUMO

Importance: Immune checkpoint inhibitors improve survival in recurrent and/or metastatic head and neck cancer, yet their role in curative human papillomavirus-positive oropharyngeal cancer (HPV+ OPC) remains undefined. Neoadjuvant nivolumab and chemotherapy followed by response-adaptive treatment in HPV+ OPC may increase efficacy while reducing toxicity. Objective: To determine the deep response rate and tolerability of the addition of neoadjuvant nivolumab to chemotherapy followed by response-adapted locoregional therapy (LRT) in patients with HPV+ OPC. Design, Setting, and Participants: This phase 2 nonrandomized clinical trial conducted at a single academic center enrolled 77 patients with locoregionally advanced HPV+ OPC from 2017 to 2020. Data analyses were performed from February 10, 2021, to January 9, 2023. Interventions: Addition of nivolumab to neoadjuvant nab-paclitaxel and carboplatin (studied in the first OPTIMA trial) followed by response-adapted LRT in patients with HPV+ OPC stages III to IV. Main Outcomes and Measures: Primary outcome was deep response rate to neoadjuvant nivolumab plus chemotherapy, defined as the proportion of tumors with 50% or greater shrinkage per the Response Evaluation Criteria in Solid Tumors 1.1. Secondary outcomes were progression-free survival (PFS) and overall survival (OS). Swallowing function, quality of life, and tissue- and blood-based biomarkers, including programmed death-ligand 1 (PD-L1) expression and circulating tumor HPV-DNA (ctHPV-DNA), were also evaluated. Results: The 73 eligible patients (median [range] age, 61 [37-82] years; 6 [8.2%] female; 67 [91.8%] male) started neoadjuvant nivolumab and chemotherapy. Deep responses were observed in 51 patients (70.8%; 95% CI, 0.59-0.81). Subsequent risk- and response-adaptive therapy was assigned as follows: group A, single-modality radiotherapy alone or transoral robotic surgery (28 patients); group B, intermediate-dose chemoradiotherapy of 45 to 50 Gray (34 patients); and group C, regular-dose chemoradiotherapy of 70 to 75 Gray (10 patients). Two-year PFS and OS were 90.0% (95% CI, 0.80-0.95) and 91.4% (95% CI, 0.82-0.96), respectively. By response-adapted group, 2-year PFS and OS for group A were 96.4% and 96.4%, and group B, 88.0% and 91.0%, respectively. Lower enteral feeding rates and changes in weight, as well as improved swallowing, were observed among patients who received response-adapted LRT. Pathologic complete response rate among patients who underwent transoral robotic surgery was 67.0%. PD-L1 expression was nonsignificantly higher for deeper responses and improved PFS, and ctHPV-DNA clearance was significantly associated with improved PFS. Conclusions and Relevance: This phase 2 nonrandomized clinical trial found that neoadjuvant nivolumab and chemotherapy followed by response-adapted LRT is feasible and has favorable tolerability, excellent OS, and improved functional outcomes in HPV+ OPC, including among patients with high-risk disease. Moreover, addition of nivolumab may benefit high PD-L1 expressors, and sensitive dynamic biomarkers (eg, ctHPV-DNA) are useful for patient selection. Trial Registration: ClinicalTrials.gov Identifier: NCT03107182.

5.
Ther Adv Med Oncol ; 14: 17588359221139601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479470

RESUMO

Background: Although the standard of care is to perform surgery of primary breast cancer (BC) after neoadjuvant chemotherapy (NAC), for certain patients achieving clinical complete response (cCR) and pathologic complete response (pCR), omission of surgical treatment may be an option. Levels of circulating tumor DNA (ctDNA) during and after therapy could identify patients achieving minimal residual disease. In this study, we evaluated whether ctDNA clearance during NAC could be a correlate to effective response in human epidermal growth factor receptor 2 positive (HER2+) and triple-negative (TN) BC patients. Methods: A prospective study was conducted to identify patient-specific PIK3CA and TP53 mutations in tissue using next-generation sequencing, which could then be used to track the presence/absence of mutations prior to, during, and following NAC using Sysmex SafeSEQ technology. All patients underwent a surgical excision after NAC, and pCR was assessed. Results: A total of 29 TN and HER2+ BC patients were examined and 20 that carried mutations in the PIK3CA and/or TP53 genes were recruited. Overall, 19 of these 20 patients harbored at least one tumor-specific mutation in their plasma at baseline. After NAC, 15 patients (75.0%) achieved pCR according to the histopathologic evaluation of the surgical specimen, and 15 patients (75.0%) had a cCR; 18 of 20 patients (90.0%) had concordant pCR and cCR. The status of 'no mutation detected' (NMD) following NAC in cCR patients correctly identified the pCR in 14 of 15 patients (93.33%), as well as correctly ruled out pCR in three patients, with an accuracy of 89.47%. During the 12-month follow-up after surgery, 40 plasma samples collected from 15 patients all showed no detectable ctDNA (NMD), and no patient recurred. Conclusion: These findings prompt further research of the value of ctDNA for non-invasive prediction of clinical/pathological response, raising the possibility of sparing surgery following NAC in selected BC patients.

6.
Antibiotics (Basel) ; 9(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933028

RESUMO

Inhibitors of the bacterial enzyme dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE; EC 3.5.1.18) hold promise as antibiotics with a new mechanism of action. Herein we describe the discovery of a new series of indoline sulfonamide DapE inhibitors from a high-throughput screen and the synthesis of a series of analogs. Inhibitory potency was measured by a ninhydrin-based DapE assay recently developed by our group. Molecular docking experiments suggest active site binding with the sulfonamide acting as a zinc-binding group (ZBG).

7.
PLoS One ; 9(5): e93593, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24806882

RESUMO

The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Amidoidrolases/genética , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Vibrio cholerae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA