Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 38(14): e100957, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304634

RESUMO

The self-assembly of cellular macromolecular machines such as the bacterial flagellar motor requires the spatio-temporal synchronization of gene expression with proper protein localization and association of dozens of protein components. In Salmonella and Escherichia coli, a sequential, outward assembly mechanism has been proposed for the flagellar motor starting from the inner membrane, with the addition of each new component stabilizing the previous one. However, very little is known about flagellar disassembly. Here, using electron cryo-tomography and sub-tomogram averaging of intact Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis cells, we study flagellar motor disassembly and assembly in situ. We first show that motor disassembly results in stable outer membrane-embedded sub-complexes. These sub-complexes consist of the periplasmic embellished P- and L-rings, and bend the membrane inward while it remains apparently sealed. Additionally, we also observe various intermediates of the assembly process including an inner-membrane sub-complex consisting of the C-ring, MS-ring, and export apparatus. Finally, we show that the L-ring is responsible for reshaping the outer membrane, a crucial step in the flagellar assembly process.


Assuntos
Bactérias/citologia , Proteínas de Bactérias/metabolismo , Flagelos/ultraestrutura , Bactérias/metabolismo , Bactérias/ultraestrutura , Membrana Externa Bacteriana/metabolismo , Tomografia com Microscopia Eletrônica , Escherichia coli/citologia , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Flagelos/metabolismo , Legionella pneumophila/citologia , Legionella pneumophila/metabolismo , Legionella pneumophila/ultraestrutura , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestrutura , Shewanella/citologia , Shewanella/metabolismo , Shewanella/ultraestrutura
2.
Mol Microbiol ; 115(6): 1069-1079, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33200455

RESUMO

Shewanella oneidensis is a dissimilatory metal reducing bacterium and model for extracellular electron transfer (EET), a respiratory mechanism in which electrons are transferred out of the cell. In the last 10 years, migration to insoluble electron acceptors for EET has been shown to be nonrandom and tactic, seemingly in the absence of molecular or energy gradients that typically allow for taxis. As the ability to sense, locate, and respire electrodes has applications in bioelectrochemical technology, a better understanding of taxis in S. oneidensis is needed. While the EET conduits of S. oneidensis have been studied extensively, its taxis pathways and their interplay with EET are not yet understood, making investigation into taxis phenomena nontrivial. Since S. oneidensis is a member of an EET-encoding clade, the genetic circuitry of taxis to insoluble acceptors may be conserved. We performed a bioinformatic analysis of Shewanella genomes to identify S. oneidensis chemotaxis orthologs conserved in the genus. In addition to the previously reported core chemotaxis gene cluster, we identify several other conserved proteins in the taxis signaling pathway. We present the current evidence for the two proposed models of EET taxis, "electrokinesis" and flavin-mediated taxis, and highlight key areas in need of further investigation.


Assuntos
Quimiotaxia/fisiologia , Transporte de Elétrons/fisiologia , Shewanella/metabolismo , Técnicas Eletroquímicas , Eletrodos/microbiologia , Elétrons , Metais/metabolismo , Família Multigênica/genética , Oxirredução , Shewanella/genética , Transdução de Sinais/fisiologia
3.
mBio ; 7(5)2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27677788

RESUMO

Physiological resistance to antibiotics confounds the treatment of many chronic bacterial infections, motivating researchers to identify novel therapeutic approaches. To do this effectively, an understanding of how microbes survive in vivo is needed. Though much can be inferred from bulk approaches to characterizing complex environments, essential information can be lost if spatial organization is not preserved. Here, we introduce a tissue-clearing technique, termed MiPACT, designed to retain and visualize bacteria with associated proteins and nucleic acids in situ on various spatial scales. By coupling MiPACT with hybridization chain reaction (HCR) to detect rRNA in sputum samples from cystic fibrosis (CF) patients, we demonstrate its ability to survey thousands of bacteria (or bacterial aggregates) over millimeter scales and quantify aggregation of individual species in polymicrobial communities. By analyzing aggregation patterns of four prominent CF pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus sp., and Achromobacter xylosoxidans, we demonstrate a spectrum of aggregation states: from mostly single cells (A. xylosoxidans), to medium-sized clusters (S. aureus), to a mixture of single cells and large aggregates (P. aeruginosa and Streptococcus sp.). Furthermore, MiPACT-HCR revealed an intimate interaction between Streptococcus sp. and specific host cells. Lastly, by comparing standard rRNA fluorescence in situ hybridization signals to those from HCR, we found that different populations of S. aureus and A. xylosoxidans grow slowly overall yet exhibit growth rate heterogeneity over hundreds of microns. These results demonstrate the utility of MiPACT-HCR to directly capture the spatial organization and metabolic activity of bacteria in complex systems, such as human sputum. IMPORTANCE: The advent of metagenomic and metatranscriptomic analyses has improved our understanding of microbial communities by empowering us to identify bacteria, calculate their abundance, and profile gene expression patterns in complex environments. We are still technologically limited, however, in regards to the many questions that bulk measurements cannot answer, specifically in assessing the spatial organization of microbe-microbe and microbe-host interactions. Here, we demonstrate the power of an enhanced optical clearing method, MiPACT, to survey important aspects of bacterial physiology (aggregation, host interactions, and growth rate), in situ, with preserved spatial information when coupled to rRNA detection by HCR. Our application of MiPACT-HCR to cystic fibrosis patient sputum revealed species-specific aggregation patterns, yet slow growth characterized the vast majority of bacterial cells regardless of their cell type. More broadly, MiPACT, coupled with fluorescent labeling, promises to advance the direct study of microbial communities in diverse environments, including microbial habitats within mammalian systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA