Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 147(16): 164106, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29096493

RESUMO

Many problems in computational materials science and chemistry require the evaluation of expensive functions with locally rapid changes, such as the turn-over frequency of first principles kinetic Monte Carlo models for heterogeneous catalysis. Because of the high computational cost, it is often desirable to replace the original with a surrogate model, e.g., for use in coupled multiscale simulations. The construction of surrogates becomes particularly challenging in high-dimensions. Here, we present a novel version of the modified Shepard interpolation method which can overcome the curse of dimensionality for such functions to give faithful reconstructions even from very modest numbers of function evaluations. The introduction of local metrics allows us to take advantage of the fact that, on a local scale, rapid variation often occurs only across a small number of directions. Furthermore, we use local error estimates to weigh different local approximations, which helps avoid artificial oscillations. Finally, we test our approach on a number of challenging analytic functions as well as a realistic kinetic Monte Carlo model. Our method not only outperforms existing isotropic metric Shepard methods but also state-of-the-art Gaussian process regression.

2.
Phys Rev Lett ; 117(27): 276001, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28084745

RESUMO

We explicitly calculate the free-energy barrier for the initial proton abstraction in the water splitting reaction at rutile TiO_{2}(110) through ab initio molecular dynamics. Combining solid-state embedding, an energy based reaction coordinate and state-of-the-art free-energy reconstruction techniques renders the calculation tractable at the hybrid density-functional theory level. The obtained free-energy barrier of approximately 0.2 eV, depending slightly on the orientation of the first acceptor water molecule, suggests a hindered reaction on the pristine rutile surface.

3.
Phys Rev Lett ; 116(14): 146101, 2016 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-27104719

RESUMO

We investigate the thermal and electronic collective fluctuations that contribute to the finite-temperature adsorption properties of flexible adsorbates on surfaces on the example of the molecular switch azobenzene C_{12}H_{10}N_{2} on the Ag(111) surface. Using first-principles molecular dynamics simulations, we obtain the free energy of adsorption that accurately accounts for entropic contributions, whereas the inclusion of many-body dispersion interactions accounts for the electronic correlations that govern the adsorbate binding. We find the adsorbate properties to be strongly entropy driven, as can be judged by a kinetic molecular desorption prefactor of 10^{24} s^{-1} that largely exceeds previously reported estimates. We relate this effect to sizable fluctuations across structural and electronic observables. A comparison of our calculations to temperature-programed desorption measurements demonstrates that finite-temperature effects play a dominant role for flexible molecules in contact with polarizable surfaces, and that recently developed first-principles methods offer an optimal tool to reveal novel collective behavior in such complex systems.

4.
J Chem Phys ; 129(21): 214117, 2008 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19063554

RESUMO

A recent approach [S. C. Althorpe, J. Chem. Phys. 124, 084105 (2006)] for interpreting geometric phase (GP) effects in a nuclear wave function confined to the lower of two conically intersecting potential energy surfaces is extended to treat coupled dynamics on both surfaces. The approach is exact, and uses simple topology to separate the wave function into contributions from Feynman paths that wind different numbers of times, and in different senses, around the conical intersection. We derive the approach first, by mapping the time-dependent wave packet describing the coupled dynamics onto a double space, and second, by classifying the Feynman paths within a time-ordered expansion of the path integral. The approach is demonstrated numerically for a simple Exe Jahn-Teller system and for a model of the (1)B(1)-S(0) intersection in pyrrole. The approach allows one to investigate and interpret the effect of the GP on population transfer between the surfaces, and also to extract contributions to the coupled nuclear wave function from different reaction paths.

5.
J Chem Theory Comput ; 10(9): 4079-97, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26588550

RESUMO

We demonstrate how the Gaussian process regression approach can be used to efficiently reconstruct free energy surfaces from umbrella sampling simulations. By making a prior assumption of smoothness and taking account of the sampling noise in a consistent fashion, we achieve a significant improvement in accuracy over the state of the art in two or more dimensions or, equivalently, a significant cost reduction to obtain the free energy surface within a prescribed tolerance in both regimes of spatially sparse data and short sampling trajectories. Stemming from its Bayesian interpretation the method provides meaningful error bars without significant additional computation. A software implementation is made available on www.libatoms.org .

6.
J Phys Chem Lett ; 5(22): 3976-80, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26276480

RESUMO

Quantum transition-state theory (QTST) and free-energy instanton theory (FEIT) are two closely related methods for estimating the quantum rate coefficient from the free-energy at the reaction barrier. In calculations on one-dimensional models, FEIT typically gives closer agreement than QTST with the exact quantum results at all temperatures below the crossover to deep tunneling, suggesting that FEIT is a better approximation than QTST in this regime. Here we show that this simple trend does not hold for systems of greater dimensionality. We report tests on several collinear and three-dimensional reactions, in which QTST outperforms FEIT over a range of temperatures below crossover, which can extend down to half the crossover temperature (below which FEIT outperforms QTST). This suggests that QTST-based methods such as ring-polymer molecular dynamics (RPMD) may often give closer agreement with the exact quantum results than FEIT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA