Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bone Jt Open ; 5(2): 101-108, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38316146

RESUMO

Aims: Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Methods: Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length. Results: The algorithm measured 1,078 radiographs at a rate of 12.6 s/image (2,156 unique measurements in 3.8 hours). There was no significant difference or bias between reader and algorithm measurements for the FMAA (p = 0.130 to 0.563). The FMAA was 6.3° (SD 1.0°; 25% outside range of 5.0° (SD 2.0°)) using definition one and 4.6° (SD 1.3°; 13% outside range of 5.0° (SD 2.0°)) using definition two. Differences between males and females were observed using definition two (males more valgus; p < 0.001). Conclusion: We developed a rapid and accurate DL tool to quantify the FMAA. Considerable variation with different measurement approaches for the FMAA supports that patient-specific anatomy and surgeon-dependent technique must be accounted for when correcting for the FMAA using an intramedullary guide. The angle between the mechanical and anatomical axes of the femur fell outside the range of 5.0° (SD 2.0°) for nearly a quarter of patients.

2.
J Rehabil Assist Technol Eng ; 5: 2055668318809661, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31191960

RESUMO

INTRODUCTION: Thoracolumbar braces are used to treat Adolescent Idiopathic Scoliosis. The objective of this study was to design and validate a mechanical analog model of the spine to simulate a thoracolumbar, single-curve, scoliotic deformity in order to quantify brace structural properties and corrective force response on the spine. METHODS: The Scoliosis Analog Model used a linkage-based system to replicate 3D kinematics of spinal correction observed in the clinic. The Scoliosis Analog Model is used with a robotic testing platform and programmed to simulate Cobb angle and axial rotation correction while equipped with a brace. The 3D force and moment responses generated by the brace in reaction to the simulated deformity were measured by six-axis load cells. RESULTS: Validation of the model's force transmission showed less than 6% loss in the force analysis due to assembly friction. During simulation of 10° Cobb angle and 5° axial rotation correction, the brace applied 101 N upwards and 67 N inwards to the apical connector of the model. Brace stiffness properties were 0.5-0.6 N/° (anteroposterior), 0.5-2.3 N/° (mediolateral), 23.3-26.5 N/° (superoinferior), and 0.6 Nm/° (axial rotational). CONCLUSIONS: The Scoliosis Analog Model was developed to provide first time measures of the multidirectional forces applied to the spine by a thoracolumbar brace. This test assembly could be used as a future design and testing tool for scoliosis brace technology.

3.
Appl Bionics Biomech ; 2018: 7813960, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30159027

RESUMO

Velcro fastening straps are commonly used to secure a scoliosis brace around the upper body and apply corrective forces to the spine. However, strap loosening and tension loss have been reported that reduce spinal correction and treatment efficacy. A novel fastening device, or controlled tension unit (CTU), was designed to overcome these limitations. A scoliosis analog model (SAM) was used to biomechanically compare the CTU fasteners and posterior Velcro straps on a conventional brace (CB) as well as on a modified brace (MB) that included a dynamic cantilever apical pad section. Brace configurations tested were (1) CB with posterior Velcro straps, (2) CB with posterior CTU fasteners, (3) MB with posterior Velcro straps, and (4) MB with posterior CTU fasteners. MB configurations were tested with 0 N, 35.6 N, and 71.2 N CTU fasteners applied across the apical pad flap. Three-dimensional forces and moments were measured at both ends of the SAM. The CTU fasteners provided the same corrective spinal loads as Velcro straps when tensioned to the same level on the CB configuration and can be used as an alternative fastening system. Dynamically loading the apical flap increased the distractive forces applied to the spine without affecting tension in the fastening straps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA