Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Cell ; 75(5): 1043-1057.e8, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31402097

RESUMO

The plasma membrane (PM) is composed of a complex lipid mixture that forms heterogeneous membrane environments. Yet, how small-scale lipid organization controls physiological events at the PM remains largely unknown. Here, we show that ORP-related Osh lipid exchange proteins are critical for the synthesis of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], a key regulator of dynamic events at the PM. In real-time assays, we find that unsaturated phosphatidylserine (PS) and sterols, both Osh protein ligands, synergistically stimulate phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity. Biophysical FRET analyses suggest an unconventional co-distribution of unsaturated PS and phosphatidylinositol 4-phosphate (PI4P) species in sterol-containing membrane bilayers. Moreover, using in vivo imaging approaches and molecular dynamics simulations, we show that Osh protein-mediated unsaturated PI4P and PS membrane lipid organization is sensed by the PIP5K specificity loop. Thus, ORP family members create a nanoscale membrane lipid environment that drives PIP5K activity and PI(4,5)P2 synthesis that ultimately controls global PM organization and dynamics.


Assuntos
Proteínas de Transporte/metabolismo , Fosfatidilinositol 4,5-Difosfato/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Cell ; 144(3): 389-401, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21295699

RESUMO

Sac1 phosphoinositide (PI) phosphatases are essential regulators of PI-signaling networks. Yeast Sac1, an integral endoplasmic reticulum (ER) membrane protein, controls PI4P levels at the ER, Golgi, and plasma membrane (PM). Whether Sac1 can act in trans and turn over PI4P at the Golgi and PM from the ER remains a paradox. We find that Sac1-mediated PI4P metabolism requires the oxysterol-binding homology (Osh) proteins. The PH domain-containing family member, Osh3, localizes to PM/ER membrane contact sites dependent upon PM PI4P levels. We reconstitute Osh protein-stimulated Sac1 PI phosphatase activity in vitro. We also show that the ER membrane VAP proteins, Scs2/Scs22, control PM PI4P levels and Sac1 activity in vitro. We propose that Osh3 functions at ER/PM contact sites as both a sensor of PM PI4P and an activator of the ER Sac1 phosphatase. Our findings further suggest that the conserved Osh proteins control PI metabolism at additional membrane contact sites.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Animais , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Cell Sci ; 135(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35437607

RESUMO

Plasma membrane (PM) transporters of the major facilitator superfamily (MFS) are essential for cell metabolism, growth and response to stress or drugs. In Saccharomyces cerevisiae, Jen1 is a monocarboxylate/H+ symporter that provides a model to dissect the molecular details underlying cellular expression, transport mechanism and turnover of MFS transporters. Here, we present evidence revealing novel roles of the cytosolic N- and C-termini of Jen1 in its biogenesis, PM stability and transport activity, using functional analyses of Jen1 truncations and chimeric constructs with UapA, an endocytosis-insensitive transporter of Aspergillus nidulans. Our results show that both N- and C-termini are critical for Jen1 trafficking to the PM, transport activity and endocytosis. Importantly, we provide evidence that Jen1 N- and C-termini undergo transport-dependent dynamic intramolecular interactions, which affect the transport activity and turnover of Jen1. Our results support an emerging concept where the cytoplasmic termini of PM transporters control transporter cell surface stability and function through flexible intramolecular interactions with each other. These findings might be extended to other MFS members to understand conserved and evolving mechanisms underlying transporter structure-function relationships. This article has an associated First Person interview with the first authors of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Simportadores , Endocitose/fisiologia , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo
4.
Cell ; 135(4): 714-25, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18976803

RESUMO

The diversity of plasma membrane (PM) proteins presents a challenge for the achievement of cargo-specific regulation of endocytosis. Here, we describe a family of proteins in yeast (ARTs, for arrestin-related trafficking adaptors) that function by targeting specific PM proteins to the endocytic system. Two members (Art1 and Art2) of the family were discovered in chemical-genetic screens, and they direct downregulation of distinct amino acid transporters triggered by specific stimuli. Sequence analysis revealed a total of nine ART family members in yeast. In addition to similarity to arrestins, the ARTs each contain multiple PY motifs. These motifs are required for recruitment of the Rsp5/Nedd4-like ubiquitin ligase, which modifies the cargoes as well as the ARTs. As a result, ubiquitinated cargoes are internalized and targeted to the vacuole (lysosome) for degradation. We propose that ARTs provide a cargo-specific quality-control pathway that mediates endocytic downregulation by coupling Rsp5/Nedd4 to diverse plasma membrane proteins.


Assuntos
Arrestina/química , Membrana Celular/metabolismo , Proteínas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas Fúngicas/metabolismo , Lisossomos/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo
5.
J Biol Chem ; 295(34): 12028-12044, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32611771

RESUMO

The endosomal sorting complexes required for transport (ESCRT) mediate evolutionarily conserved membrane remodeling processes. Here, we used budding yeast (Saccharomyces cerevisiae) to explore how the ESCRT machinery contributes to plasma membrane (PM) homeostasis. We found that in response to reduced membrane tension and inhibition of TOR complex 2 (TORC2), ESCRT-III/Vps4 assemblies form at the PM and help maintain membrane integrity. In turn, the growth of ESCRT mutants strongly depended on TORC2-mediated homeostatic regulation of sphingolipid (SL) metabolism. This was caused by calcineurin-dependent dephosphorylation of Orm2, a repressor of SL biosynthesis. Calcineurin activity impaired Orm2 export from the endoplasmic reticulum (ER) and thereby hampered its subsequent endosome and Golgi-associated degradation (EGAD). The ensuing accumulation of Orm2 at the ER in ESCRT mutants necessitated TORC2 signaling through its downstream kinase Ypk1, which repressed Orm2 and prevented a detrimental imbalance of SL metabolism. Our findings reveal compensatory cross-talk between the ESCRT machinery, calcineurin/TORC2 signaling, and the EGAD pathway important for the regulation of SL biosynthesis and the maintenance of PM homeostasis.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Membrana Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(18): 4684-4689, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29674454

RESUMO

Lysosomes have an important role in cellular protein and organelle quality control, metabolism, and signaling. On the surface of lysosomes, the PIKfyve/Fab1 complex generates phosphatidylinositol 3,5-bisphosphate, PI-3,5-P2, which is critical for lysosomal membrane homeostasis during acute osmotic stress and for lysosomal signaling. Here, we identify the inverted BAR protein Ivy1 as an inhibitor of the Fab1 complex with a direct influence on PI-3,5-P2 levels and vacuole homeostasis. Ivy1 requires Ypt7 binding for its function, binds PI-3,5-P2, and interacts with the Fab1 kinase. Colocalization of Ivy1 and Fab1 is lost during osmotic stress. In agreement with Ivy1's role as a Fab1 regulator, its overexpression blocks Fab1 activity during osmotic shock and vacuole fragmentation. Conversely, loss of Ivy1, or lateral relocalization of Ivy1 on vacuoles away from Fab1, results in vacuole fragmentation and poor growth. Our data suggest that Ivy1 modulates Fab1-mediated PI-3,5-P2 synthesis during membrane stress and may allow adjustment of the vacuole membrane environment.


Assuntos
Proteínas de Transporte/metabolismo , Membranas Intracelulares/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte/genética , Lisossomos/genética , Lisossomos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
7.
BMC Biol ; 18(1): 28, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32169085

RESUMO

BACKGROUND: Phosphoinositide lipids provide spatial landmarks during polarized cell growth and migration. Yet how phosphoinositide gradients are oriented in response to extracellular cues and environmental conditions is not well understood. Here, we elucidate an unexpected mode of phosphatidylinositol 4-phosphate (PI4P) regulation in the control of polarized secretion. RESULTS: We show that PI4P is highly enriched at the plasma membrane of growing daughter cells in budding yeast where polarized secretion occurs. However, upon heat stress conditions that redirect secretory traffic, PI4P rapidly increases at the plasma membrane in mother cells resulting in a more uniform PI4P distribution. Precise control of PI4P distribution is mediated through the Osh (oxysterol-binding protein homology) proteins that bind and present PI4P to a phosphoinositide phosphatase. Interestingly, Osh3 undergoes a phase transition upon heat stress conditions, resulting in intracellular aggregates and reduced cortical localization. Both the Osh3 GOLD and ORD domains are sufficient to form heat stress-induced aggregates, indicating that Osh3 is highly tuned to heat stress conditions. Upon loss of Osh3 function, the polarized distribution of both PI4P and the exocyst component Exo70 are impaired. Thus, an intrinsically heat stress-sensitive PI4P regulatory protein controls the spatial distribution of phosphoinositide lipid metabolism to direct secretory trafficking as needed. CONCLUSIONS: Our results suggest that control of PI4P metabolism by Osh proteins is a key determinant in the control of polarized growth and secretion.


Assuntos
Proteínas de Transporte/genética , Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte/metabolismo , Metabolismo dos Lipídeos , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
BMC Biol ; 15(1): 102, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089042

RESUMO

Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.


Assuntos
Ciclo Celular , Metabolismo dos Lipídeos , Biogênese de Organelas , Transporte Biológico , Membrana Celular/metabolismo
9.
EMBO J ; 31(13): 2882-94, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22562153

RESUMO

Phosphatidylinositol-4,5-bisphosphate, PtdIns(4,5)P(2), is an essential signalling lipid that regulates key processes such as endocytosis, exocytosis, actin cytoskeletal organization and calcium signalling. Maintaining proper levels of PtdIns(4,5)P(2) at the plasma membrane (PM) is crucial for cell survival and growth. We show that the conserved PtdIns(4)P 5-kinase, Mss4, forms dynamic, oligomeric structures at the PM that we term PIK patches. The dynamic assembly and disassembly of Mss4 PIK patches may provide a mechanism to precisely modulate Mss4 kinase activity, as needed, for localized regulation of PtdIns(4,5)P(2) synthesis. Furthermore, we identify a tandem PH domain-containing protein, Opy1, as a novel Mss4-interacting protein that partially colocalizes with PIK patches. Based upon genetic, cell biological, and biochemical data, we propose that Opy1 functions as a coincidence detector of the Mss4 PtdIns(4)P 5-kinase and PtdIns(4,5)P(2) and serves as a negative regulator of PtdIns(4,5)P(2) synthesis at the PM. Our results also suggest that additional conserved tandem PH domain-containing proteins may play important roles in regulating phosphoinositide signalling.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Fosfatidilinositol 4,5-Difosfato/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia
10.
Proc Natl Acad Sci U S A ; 107(26): 11805-10, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20547860

RESUMO

During response of budding yeast to peptide mating pheromone, the cell becomes markedly polarized and MAPK scaffold protein Ste5 localizes to the resulting projection (shmoo tip). We demonstrated before that this recruitment is essential for sustained MAPK signaling and requires interaction of a pleckstrin homology (PH) domain in Ste5 with phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] in the plasma membrane. Using fluorescently tagged high-affinity probes specific for PtdIns(4,5)P(2), we have now found that this phosphoinositide is highly concentrated at the shmoo tip in cells responding to pheromone. Maintenance of this strikingly anisotropic distribution of PtdIns(4,5)P(2), stable tethering of Ste5 at the shmoo tip, downstream MAPK activation, and expression of a mating pathway-specific reporter gene all require continuous function of the plasma membrane-associated PtdIns 4-kinase Stt4 and the plasma membrane-associated PtdIns4P 5-kinase Mss4 (but not the Golgi-associated PtdIns 4-kinase Pik1). Our observations demonstrate that PtdIns(4,5)P(2) is the primary determinant for restricting localization of Ste5 within the plasma membrane and provide direct evidence that an extracellular stimulus-evoked self-reinforcing mechanism generates a spatially enriched pool of PtdIns(4,5)P(2) necessary for the membrane anchoring and function of a signaling complex.


Assuntos
Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 4,5-Difosfato/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Extensões da Superfície Celular/metabolismo , Polarização de Fluorescência , Corantes Fluorescentes , Feromônios/farmacologia , Precursores de Proteínas/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/farmacologia
11.
Biochemistry ; 51(15): 3170-7, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22452743

RESUMO

Sac family phosphoinositide phosphatases comprise an evolutionarily conserved family of enzymes in eukaryotes. Our recently determined crystal structure of the Sac phosphatase domain of yeast Sac1, the founding member of the Sac family proteins, revealed a unique conformation of the catalytic P-loop and a large positively charged groove at the catalytic site. We now report a unique mechanism for the regulation of its phosphatase activity. Sac1 is an allosteric enzyme that can be activated by its product phosphatidylinositol or anionic phospholipid phosphatidylserine. The activation of Sac1 may involve conformational changes of the catalytic P-loop induced by direct binding with the regulatory anionic phospholipids in the large cationic catalytic groove. These findings highlight the fact that lipid composition of the substrate membrane plays an important role in the control of Sac1 function.


Assuntos
Fosfolipídeos/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação Alostérica , Domínio Catalítico , Cinética , Conformação Proteica
12.
J Vis Exp ; (184)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35758663

RESUMO

Transmission electron microscopy has been long considered to be the gold standard for the visualization of cellular ultrastructure. However, analysis is often limited to two dimensions, hampering the ability to fully describe the three-dimensional (3D) ultrastructure and functional relationship between organelles. Volume electron microscopy (vEM) describes a collection of techniques that enable the interrogation of cellular ultrastructure in 3D at mesoscale, microscale, and nanoscale resolutions. This protocol provides an accessible and robust method to acquire vEM data using serial section transmission EM (TEM) and covers the technical aspects of sample processing through to digital 3D reconstruction in a single, straightforward workflow. To demonstrate the usefulness of this technique, the 3D ultrastructural relationship between the endoplasmic reticulum and mitochondria and their contact sites in liver hepatocytes is presented. Interorganelle contacts serve vital roles in the transfer of ions, lipids, nutrients, and other small molecules between organelles. However, despite their initial discovery in hepatocytes, there is still much to learn about their physical features, dynamics, and functions. Interorganelle contacts can display a range of morphologies, varying in the proximity of the two organelles to one another (typically ~10-30 nm) and the extent of the contact site (from punctate contacts to larger 3D cisternal-like contacts). The examination of close contacts requires high-resolution imaging, and serial section TEM is well suited to visualize the 3D ultrastructural of interorganelle contacts during hepatocyte differentiation, as well as alterations in hepatocyte architecture associated with metabolic diseases.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Retículo Endoplasmático/metabolismo , Hepatócitos/metabolismo , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
13.
Mol Biol Cell ; 33(12): ar113, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35947498

RESUMO

Contacts between the endoplasmic reticulum and the plasma membrane (ER-PM contacts) have important roles in membrane lipid and calcium dynamics, yet their organization in polarized epithelial cells has not been thoroughly described. Here we examine ER-PM contacts in hepatocytes in mouse liver using electron microscopy, providing the first comprehensive ultrastructural study of ER-PM contacts in a mammalian epithelial tissue. Our quantitative analyses reveal strikingly distinct ER-PM contact architectures spatially linked to apical, lateral, and basal PM domains. Notably, we find that an extensive network of ER-PM contacts exists at lateral PM domains that form intercellular junctions between hepatocytes. Moreover, the spatial organization of ER-PM contacts is conserved in epithelial spheroids, suggesting that ER-PM contacts may serve conserved roles in epithelial cell architecture. Consistent with this notion, we show that ORP5 activity at ER-PM contacts modulates the apical-basolateral aspect ratio in HepG2 cells. Thus ER-PM contacts have a conserved distribution and crucial roles in PM domain architecture across epithelial cell types.


Assuntos
Cálcio , Retículo Endoplasmático , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Mamíferos/metabolismo , Lipídeos de Membrana/metabolismo , Camundongos
14.
Life Sci Alliance ; 5(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35440494

RESUMO

The evolutionarily conserved extended synaptotagmin (E-Syt) proteins are calcium-activated lipid transfer proteins that function at contacts between the ER and plasma membrane (ER-PM contacts). However, roles of the E-Syt family members in PM lipid organisation remain incomplete. Among the E-Syt family, the yeast tricalbin (Tcb) proteins are essential for PM integrity upon heat stress, but it is not known how they contribute to PM maintenance. Using quantitative lipidomics and microscopy, we find that the Tcb proteins regulate phosphatidylserine homeostasis at the PM. Moreover, upon heat-induced membrane stress, Tcb3 co-localises with the PM protein Sfk1 that is implicated in PM phospholipid asymmetry and integrity. The Tcb proteins also control the PM targeting of the known phosphatidylserine effector Pkc1 upon heat-induced stress. Phosphatidylserine has evolutionarily conserved roles in PM organisation, integrity, and repair. We propose that phospholipid regulation is an ancient essential function of E-Syt family members required for PM integrity.


Assuntos
Proteínas de Membrana , Fosfatidilserinas , Membrana Celular/metabolismo , Homeostase , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo , Sinaptotagminas/metabolismo
15.
J Biol Chem ; 285(53): 41947-60, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20972263

RESUMO

The protein kinase C (PKC)-MAPK signaling cascade is activated and is essential for viability when cells are starved for the phospholipid precursor inositol. In this study, we report that inhibiting inositol-containing sphingolipid metabolism, either by inositol starvation or treatment with agents that block sphingolipid synthesis, triggers PKC signaling independent of sphingoid base accumulation. Under these same growth conditions, a fluorescent biosensor that detects the necessary PKC signaling intermediate, phosphatidylinositol (PI)-4-phosphate (PI4P), is enriched on the plasma membrane. The appearance of the PI4P biosensor on the plasma membrane correlates with PKC activation and requires the PI 4-kinase Stt4p. Like other mutations in the PKC-MAPK pathway, mutants defective in Stt4p and the PI4P 5-kinase Mss4p, which generates phosphatidylinositol 4,5-bisphosphate, exhibit inositol auxotrophy, yet fully derepress INO1, encoding inositol-3-phosphate synthase. These observations suggest that inositol-containing sphingolipid metabolism controls PKC signaling by regulating access of the signaling lipids PI4P and phosphatidylinositol 4,5-bisphosphate to effector proteins on the plasma membrane.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Membrana Celular/metabolismo , Inositol/química , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Esfingolipídeos/química , Técnicas Biossensoriais , Ativação Enzimática , Regulação Fúngica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Fenótipo , Transdução de Sinais , Temperatura , Fatores de Tempo
16.
Biol Chem ; 392(8-9): 699-712, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21824003

RESUMO

Membrane trafficking via targeted exocytosis to the Saccharomyces cerevisiae bud neck provides new membrane and membrane-associated factors that are critical for cytokinesis. It remains unknown whether yeast plasma membrane abscission, the final step of cytokinesis, occurs spontaneously following extensive vesicle fusion, as in plant cells, or requires dedicated membrane fission machinery, as in cultured mammalian cells. Components of the endosomal sorting complexes required for transport (ESCRT) pathway, or close relatives thereof, appear to participate in cytokinetic abscission in various cell types, but roles in cell division had not been documented in budding yeast, where ESCRTs were first characterized. By contrast, the septin family of filament-forming cytoskeletal proteins were first identified by their requirement for yeast cell division. We show here that mutations in ESCRT-encoding genes exacerbate the cytokinesis defects of cla4Δ or elm1Δ mutants, in which septin assembly is perturbed at an early stage in cell division, and alleviate phenotypes of cells carrying temperature-sensitive alleles of a septin-encoding gene, CDC10. Elevated chitin synthase II (Chs2) levels coupled with aberrant morphogenesis and chitin deposition in elm1Δ cells carrying ESCRT mutations suggest that ESCRTs normally enhance the efficiency of cell division by promoting timely endocytic turnover of key cytokinetic enzymes.


Assuntos
Citocinese/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Saccharomycetales/metabolismo , Septinas/metabolismo , Citocinese/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Endocitose/genética , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Exocitose/genética , Exocitose/fisiologia , Mutação , Saccharomycetales/genética , Septinas/genética
17.
Curr Biol ; 31(2): 297-309.e8, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33157024

RESUMO

Organelles of the endomembrane system maintain their identity and integrity during growth or stress conditions by homeostatic mechanisms that regulate membrane flux and biogenesis. At lysosomes and endosomes, the Fab1 lipid kinase complex and the nutrient-regulated target of rapamycin complex 1 (TORC1) control the integrity of the endolysosomal homeostasis and cellular metabolism. Both complexes are functionally connected as Fab1-dependent generation of PI(3,5)P2 supports TORC1 activity. Here, we identify Fab1 as a target of TORC1 on signaling endosomes, which are distinct from multivesicular bodies, and provide mechanistic insight into their crosstalk. Accordingly, TORC1 can phosphorylate Fab1 proximal to its PI3P-interacting FYVE domain, which causes Fab1 to shift to signaling endosomes, where it generates PI(3,5)P2. This, in turn, regulates (1) vacuole morphology, (2) recruitment of TORC1 and the TORC1-regulatory Rag GTPase-containing EGO complex to signaling endosomes, and (3) TORC1 activity. Thus, our study unravels a regulatory feedback loop between TORC1 and the Fab1 complex that controls signaling at endolysosomes.


Assuntos
Endossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Ensaios Enzimáticos , Retroalimentação Fisiológica , Fosforilação/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Transdução de Sinais
18.
Curr Opin Cell Biol ; 63: 125-134, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32088611

RESUMO

The endoplasmic reticulum (ER) forms an extensive network of membrane contact sites with intra-cellular organelles and the plasma membrane (PM). Interorganelle contacts have vital roles in membrane lipid and ion dynamics. In particular, ER-PM contacts are integral to numerous inter-cellular and intra-cellular signaling pathways including phosphoinositide lipid and calcium signaling, mechanotransduction, metabolic regulation, and cell stress responses. Accordingly, ER-PM contacts serve important signaling functions in excitable cells including neurons and muscle and endocrine cells. This review highlights recent advances in our understanding of the vital roles for ER-PM contacts in phosphoinositide and calcium signaling and how signaling pathways in turn regulate proteins that form and function at ER-PM contacts.


Assuntos
Sinalização do Cálcio/fisiologia , Membrana Celular/fisiologia , Retículo Endoplasmático/fisiologia , Fosfatidilinositóis/metabolismo , Animais , Transporte Biológico/fisiologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mecanotransdução Celular/fisiologia , Membranas Mitocondriais/metabolismo , Neurônios/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-31349025

RESUMO

The endoplasmic reticulum (ER) is a highly organized organelle that performs vital functions including de novo membrane lipid synthesis and transport. Accordingly, numerous lipid biosynthesis enzymes are localized in the ER membrane. However, it is now evident that lipid metabolism is sub-compartmentalized within the ER and that lipid biosynthetic enzymes engage with lipid transfer proteins (LTPs) to rapidly shuttle newly synthesized lipids from the ER to other organelles. As such, intimate relationships between lipid metabolism and lipid transfer pathways exist within the ER network. Notably, certain LTPs enhance the activities of lipid metabolizing enzymes; likewise, lipid metabolism can ensure the specificity of LTP transfer/exchange reactions. Yet, our understanding of these mutual relationships is still emerging. Here, we highlight past and recent key findings on specialized ER membrane domains involved in efficient lipid metabolism and transport and consider unresolved issues in the field.


Assuntos
Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Animais , Transporte Biológico , Vias Biossintéticas , Proteínas de Transporte/metabolismo , Humanos , Fosfolipídeos/metabolismo
20.
J Cell Biol ; 162(3): 413-23, 2003 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-12900393

RESUMO

Down-regulation (degradation) of cell surface proteins within the lysosomal lumen depends on the function of the multivesicular body (MVB) sorting pathway. The function of this pathway requires the class E vacuolar protein sorting (Vps) proteins. Of the class E Vps proteins, both the ESCRT-I complex (composed of the class E proteins Vps23, 28, and 37) and Vps27 (mammalian hepatocyte receptor tyrosine kinase substrate, Hrs) have been shown to interact with ubiquitin, a signal for entry into the MVB pathway. We demonstrate that activation of the MVB sorting reaction is dictated largely through interactions between Vps27 and the endosomally enriched lipid species phosphatidylinositol 3-phosphate via the FYVE domain (Fab1, YGL023, Vps27, and EEA1) of Vps27. ESCRT-I then physically binds to Vps27 on endosomal membranes via a domain within the COOH terminus of Vps27. A peptide sequence in this domain, PTVP, is involved in the function of Vps27 in the MVB pathway, the efficient endosomal recruitment of ESCRT-I, and is related to a motif in HIV-1 Gag protein that is capable of interacting with Tsg101, the mammalian homologue of Vps23. We propose that compartmental specificity for the MVB sorting reaction is the result of interactions of Vps27 with phosphatidylinositol 3-phosphate and ubiquitin. Vps27 subsequently recruits/activates ESCRT-I on endosomes, thereby facilitating sorting of ubiquitinated MVB cargoes.


Assuntos
Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Células Eucarióticas/metabolismo , Membranas Intracelulares/metabolismo , Transporte Proteico/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular , Sítios de Ligação/fisiologia , Compartimento Celular/fisiologia , Células Cultivadas , Complexos Endossomais de Distribuição Requeridos para Transporte , Substâncias Macromoleculares , Modelos Moleculares , Peptídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Estrutura Terciária de Proteína/fisiologia , Saccharomyces cerevisiae , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA