Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257367

RESUMO

We explore the crystal structure and luminescent properties of a new 1D organic-inorganic hybrid, MHy2SbI5, based on methylhydrazine. The compound reveals the red photoluminescence (PL) originating from the 5s2 electron pairs of Sb(III) as well as complex structural behavior. MHy2SbI5 crystalizes in two polymorphic forms (I and II) with distinct thermal properties and structural characteristics. Polymorph I adopts the acentric P212121 chiral space group confirmed by SHG, and, despite a thermally activated disorder of MHy, does not show any phase transitions, while polymorph II undergoes reversible low-temperature phase transition and high-temperature reconstructive transformation to polymorph I. The crystal structures of both forms consist of 1D perovskite zig-zag chains of corner-sharing SbI6 octahedra. The intriguing phase transition behavior of II is associated with the unstable arrangement of the [SbI5]2-∞ chains in the structure. The energy band gap (Eg) values, estimated based on the UV-Vis absorption spectra, indicate that both polymorphs have band gaps, with Eg values of 2.01 eV for polymorph I and 2.12 eV for polymorph II.

2.
Inorg Chem ; 62(49): 20020-20029, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38029406

RESUMO

Herein, we report a case of A2MgWO6 (A = Ca, Sr, Ba) doped with 2%Dy3+, 2%Li+, in which the influences of the cation substitution are exhibited through the crystal structure, the charge transfer band (O2--W6+), the emission spectrum, the color of the luminescence, and the luminescent decay time. The substitution of Ca2+ and Sr2+ ions for larger ions (Ba2+) led to the crystal structure alteration from cubic to monoclinic and tetragonal, respectively. These structure changes also lowered the crystallography symmetry site of Dy3+, tuned the color of the emitted light from the whitish to yellowish region, and caused a blue shift of the CTB. Furthermore, a significant decline in the lifetime of the 4F9/2 → 6H13/2,15/2 transitions was noticed, from 748, 199, to 146 µs corresponding to Ba, Sr, Ca sample owing to the reduction in the local symmetry of Dy3+. Moreover, the thermal sensing properties of 2%Dy3+-doped samples were investigated based on the fluorescence intensity ratio technique in the range of 80-325 K. Under 266 nm excitation wavelength, the maximum relative sensitivity of the investigated samples was remarkably enhanced from 2.26%/K, 3.04%/K, to 4.38%/K corresponding to Ba, Ca, and Sr samples, respectively. In addition to providing a comprehensive understanding of the effects of compositional modifications on the optical properties, the results also present a viable pathway to manipulate the temperature sensing performance.

3.
Sensors (Basel) ; 23(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37514554

RESUMO

Metal-organic frameworks are of great interest to scientists from various fields. This group also includes organic-inorganic hybrids with a perovskite structure. Recently their structural, phonon, and luminescent properties have been paid much attention. However, a new way of characterization of these materials has become luminescence thermometry. Herein, we report the structure, luminescence, and temperature detection ability of formate organic-inorganic perovskite [C(NH2)3]M(HCOO)3 (Mg2+, Mn2+, Zn2+) doped with Cr3+ ions. Crystal field strength (Dq/B) and Racah parameters were determined based on diffuse reflectance spectra. It was shown that Cr3+ ions are positioned in the intermediate crystal field or close to it with a Dq/B range of 2.29-2.41. The co-existence of the spin-forbidden and spin-allowed transitions of Cr3+ ions enable the proposal of an approach for remote readout of the temperature. The relative sensitivity (Sr) can be easily modified by sample composition and Cr3+ ions concentration. The luminescent thermometer based on the 2E/4T2g transitions has the relative sensitivity Sr of 2.08%K-1 at 90 K for [C(NH2)3]Mg(HCOO)3: 1% Cr3+ and decrease to 1.20%K-1 at 100 K and 1.08%K-1 at 90 K for Mn2+ and Zn2+ analogs, respectively.

4.
Inorg Chem ; 61(38): 15225-15238, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36102245

RESUMO

Hybrid organic-inorganic lead halide perovskites have emerged as promising materials for various applications, including solar cells, light-emitting devices, dielectrics, and optical switches. In this work, we report the synthesis, crystal structures, and linear and nonlinear optical as well as dielectric properties of three imidazolium lead bromides, IMPbBr3, IM2PbBr4, and IM3PbBr5 (IM+ = imidazolium). We show that these compounds exhibit three distinct structure types. IMPbBr3 crystallizes in the 4H-hexagonal perovskite structure with face- and corner-shared PbBr6 octahedra (space group P63/mmc at 295 K), IM2PbBr4 adopts a one-dimensional (1D) double-chain structure with edge-shared octahedra (space group P1̅ at 295 K), while IM3PbBr5 crystallizes in the 1D single-chain structure with corner-shared PbBr6 octahedra (space group P1̅ at 295 K). All compounds exhibit two structural phase transitions, and the lowest temperature phases of IMPbBr3 and IM3PbBr5 are noncentrosymmetric (space groups Pna21 at 190 K and P1 at 100 K, respectively), as confirmed by measurements of second-harmonic generation (SHG) activity. X-ray diffraction and thermal and Raman studies demonstrate that the phase transitions feature an order-disorder mechanism. The only exception is the isostructural P1̅ to P1̅ phase transition at 141 K in IM2PbBr4, which is of a displacive type. Dielectric studies reveal that IMPbBr3 is a switchable dielectric material, whereas IM3PbBr5 is an improper ferroelectric. All compounds exhibit broadband, highly shifted Stokes emissions. Features of these emissions, i.e., band gap and excitonic absorption, are discussed in relation to the different structures of each composition.

5.
Inorg Chem ; 61(39): 15520-15531, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36130277

RESUMO

Two-dimensional (2D) lead halide perovskites are a family of materials at the heart of solar cell, light-emitting diode, and photodetector technologies. This perspective leads to a number of synthetic efforts toward materials of this class, including those with prescribed polar architectures. The methylhydrazinium (MHy+) cation was recently presumed to have an unusual capacity to generate non-centrosymmetric perovskite phases, despite its intrinsically nonchiral structure. Here, we witness this effect once again in the case of the Ruddlesden-Popper perovskite phase of formula MHy2PbCl4. MHy2PbCl4 features three temperature-dependent crystal phases, with two first-order phase transitions at T1 = 338.2 K (331.8 K) and T2 = 224.0 K (205.2 K) observed in the heating (cooling) modes, respectively. Observed transitions involve a transformation from high-temperature orthorhombic phase I, with the centrosymmetric space group Pmmn, through the room-temperature modulated phase II, with the average structure being isostructural to I, to the low-temperature monoclinic phase III, with non-centrosymmetric space group P21. The intermediate phase II is a rare example of a modulated structure in 2D perovskites, with Pmmn(00γ)s00 superspace symmetry and modulation vector q ≅ 0.25c*. MHy2PbCl4 beats the previous record of MHy2PbBr4 in terms of the shortest inorganic interlayer distance in 2D perovskites (8.79 Šat 350 K vs 8.66 Šat 295 K, respectively). The characteristics of phase transitions are explored with differential scanning calorimetry, dielectric, and Raman spectroscopies. The non-centrosymmetry of phase III is confirmed with second harmonic generation (SHG) measurements, and polarity is demonstrated by the pyroelectric effect. MHy2PbCl4 also exhibits thermochromism, with the photoluminescence (PL) color changing from purplish-blue at 80 K to bluish-green at 230 K. The demonstration of polar characteristics for one more member of the methylhydrazinium perovskites settles a debate about whether this approach can present value for the crystal engineering of acentric solids similar to that which was recently adopted by a so-called fluorine substitution effect.

6.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558085

RESUMO

Hybrid organic-inorganic compounds crystallizing in a three-dimensional (3D) perovskite-type architecture have attracted considerable attention due to their multifunctional properties. One of the most intriguing groups is perovskites with hypophosphite linkers. Herein, the optical properties of six hybrid hypophosphite perovskites containing manganese ions are presented. The band gaps of these compounds, as well as the luminescence properties of the octahedrally coordinated Mn2+ ions associated with the 4T1g(G) → 6A1g(S) transition are shown to be dependent on the organic cation type and Goldschmidt tolerance factor. Thus, a correlation between essential structural features of Mn-based hybrid hypophosphites and their optical properties was observed. Additionally, the broad infrared luminescence of the studied compounds was examined for potential application in an indoor lighting system for plant growth.


Assuntos
Compostos de Cálcio , Óxidos , Cátions , Tolerância a Medicamentos
7.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432050

RESUMO

Three-dimensional lead halide perovskites are known for their excellent optoelectronic properties, making them suitable for photovoltaic and light-emitting applications. Here, we report for the first time the Raman spectra and photoluminescent (PL) properties of recently discovered three-dimensional aziridinium lead halide perovskites (AZPbX3, X = Cl, Br, I), as well as assignment of vibrational modes. We also report diffuse reflection data, which revealed an extended absorption of light of AZPbX3 compared to the MA and FA counterparts and are beneficial for solar cell application. We demonstrated that this behavior is correlated with the size of the organic cation, i.e., the energy band gap of the cubic lead halide perovskites decreases with the increasing size of the organic cation. All compounds show intense PL, which weakens on heating and shifts toward higher energies. This PL is red shifted compared to the FA and MA counterparts. An analysis of the PL data revealed the small exciton binding energy of AZPbX3 compounds (29-56 meV). Overall, the properties of AZPbX3 are very similar to those of the well-known MAPbX3 and FAPbX3 perovskites, indicating that the aziridinium analogues are also attractive materials for light-emitting and solar cell applications.


Assuntos
Compostos de Cálcio , Óxidos , Compostos de Cálcio/química , Óxidos/química , Titânio/química , Vibração
8.
Phys Chem Chem Phys ; 21(15): 7965-7972, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30924483

RESUMO

We report the structural, phonon and luminescence studies of six heterometallic perovskite-type metal-organic frameworks (MOFs) templated by methylammonium cations (CH3NH3+ and MeA+) with the following formulae: [MeA]Na0.5Cr0.5(HCOO)3 (MeANaCr), [MeA]K0.5Cr0.5(HCOO)3 (MeAKCr), [MeA]Na0.5Al0.5(HCOO)3 (MeANaAl), [MeA]K0.5Al0.5(HCOO)3 (MeAKAl), [MeA]Na0.5Cr0.025Al0.475(HCOO)3 (MeANaAlCr, 5 mol% of Cr3+ ions) and [MeA]K0.5Cr0.025Al0.475(HCOO)3 (MeAKAlCr, 5 mol% of Cr3+ ions). All of them crystallise in a monoclinic system (P21/n space group) with one MeA+ cation in an asymmetric unit forming four medium-strength hydrogen bonds (HBs) with a metal-formate framework. The DSC measurements and XRD single-crystal studies show that the studied crystals do not undergo structural phase transitions in the 100-440 K range. The high tolerance factors indicate that there is not enough space for the re-orientational motions of the MeA+ cations, explaining the lack of the structural phase transitions. We also present IR and Raman studies supported by the factor group analysis together with luminescence properties. We have shown that the strength of the crystal field parameter (Dq/B) varies in the 2.13-2.56 range depending on the chemical composition of the studied compounds. We show that perovskite-like formate MOFs with Na+ (K+) ions can be considered as potential candidates for non-contact thermometry in the 225-400 K (325 K) range.

9.
Phys Chem Chem Phys ; 20(47): 29951-29958, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30475379

RESUMO

We report the synthesis, crystal structure, and thermal, dielectric, optical and phonon properties of a new two-dimensional (2D) cadmium(ii) complex [(C3H7)4N][Cd(N(CN)2)3]. Our results show that this compound crystallizes in a two-dimensional monoclinic structure, with the space group P2/n, with ordered tetrapropylammonium cations and disorder of some dicyanamide linkers. It undergoes a structural phase transition at 245 K into another low-temperature (LT) monoclinic structure, with the space group P21/n. X-ray diffraction, dielectric, IR and Raman studies show that freezing of the dca motions stands at the origin of the phase transition. Optical studies indicate that this material has an energy band gap of 4.83 eV and exhibits intense bluish-white emission under 266 nm excitation. Upon heating, this compound undergoes an irreversible phase transition near 390 K associated with significant bond rearrangement. The high-temperature (HT) phase has a three-dimensinal (3D) perovskite-like structure. [(C3H7)4N][Cd(N(CN)2)3] is, therefore, the first example of a hybrid organic-inorganic dicyanamide exhibiting a temperature-induced reconstructive transition from a 2D (layered) structure to a 3D (perovskite-like) structure.

10.
Phys Chem Chem Phys ; 20(34): 22284-22295, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30123897

RESUMO

We report the synthesis, crystal structure, vibrational and luminescence properties of two heterometallic perovskite-type metal-organic frameworks (MOFs) containing the ammonium cation (NH4+, Am+): [NH4][Na0.5Cr0.5(HCOO)3] (AmNaCr) and [NH4][Na0.5Al0.475Cr0.025(HCOO)3] (AmNaAlCr) in comparison to the previously reported [NH4][Na0.5Al0.5(HCOO)3] (AmNaAl). The room-temperature crystal structure of AmNaCr and AmNaAlCr was determined to be R3[combining macron]. The hydrogen bonding (HB) energy calculated using density functional theory (DFT) agrees well with experimental data, and confirms the existence of almost identical H-bonding in AmNaCr and AmNaAl, with three short hydrogen bonds and a longer trifurcated H-bond. Temperature-dependent Raman measurements supported by differential scanning calorimetry show that AmNaCr does not undergo any structural phase transitions in the 80-400 K temperature range. The high-pressure Raman spectra of AmNaCr show the onset of two structural instabilities near 0.5 and 1.5 GPa. The first instability involves weak distortion of the framework, while the second leads to irreversible amorphization of the sample. High-pressure DFT simulations show that the unit cell of the AmNaCr compound contracts along the c axis, which leads to a shortening of the trifurcated H-bond. The optical properties show that both studied crystals exhibit Cr3+-based emission characteristic of intermediate ligand field strength.

11.
ACS Appl Mater Interfaces ; 15(5): 7074-7082, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36710446

RESUMO

Metal-organic frameworks with perovskite structures have recently attracted increasing attention due to their structural, optical, and phonon properties. Herein, we report the structural and luminescence studies of a series of six heterometallic perovskite-type metal-organic frameworks with the general formula [EA]2NaCrxAl1-x(HCOO)6, where x = 1, 0.78, 0.57, 0.30, 0.21, and 0. The diffuse reflectance spectral analysis provided valuable information, particularly on crystal field strength (Dq/B) and energy band gap (Eg). We showed that the Dq/B varies in the 2.33-2.76 range depending on the composition of the sample. Performed Raman, XRD, and lifetime decay analyses provided information on the relationship between those parameters and the chemical composition. We also performed the temperature-dependent luminescence studies within the 80-400 K range, which was the first attempt to use an organic-inorganic framework luminescence thermometer based solely on the luminescence of Cr3+ ions. The results showed a strong correlation between the surrounding temperature, composition, and spectroscopic properties, allowing one to design a temperature sensing model. The temperature-dependent luminescence of the Cr3+ ions makes the investigated materials promising candidates for noncontact thermometers.

12.
Dalton Trans ; 51(23): 9094-9102, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35661846

RESUMO

Hybrid organic-inorganic perovskites comprising hypophosphite ligands are emerging functional materials exhibiting magnetic, photoluminescence, negative thermal expansion and negative linear compressibility behaviours. This work reports five novel hypophosphite perovskites, [A]M(H2POO)3 (A = pyrrolidinium (PYR+), guanidinium (GUA+) and imidazolium (IM+); M = Cd2+ and Co2+). [GUA]Cd(H2POO)3, [IM]Cd(H2POO)3, [GUA]Co(H2POO)3 and [IM]Co(H2POO)3 belong to the centrosymmetric trigonal R3̄c, monoclinic P21/c, monoclinic I2/m, and orthorhombic Pbca space groups, respectively, while [PYR]Cd(H2POO)3 crystallizes in the noncentrosymmetric orthorhombic space group Aea2. The polar order of PYR+ cations was confirmed by observation of moderate second harmonic generation (SHG) activity. Magnetic studies reveal that [GUA]Co(H2POO)3 and [IM]Co(H2POO)3 are weak ferromagnets with the ordering temperatures higher compared to their manganese analogues. Upon ultraviolet excitation, the cadmium counterparts exhibit purplish-blue emissions at low temperatures, which decrease on heating. Analysis of the photoluminescence data reveals that the emission quenching decreases with decreasing distortion of the cadmium-hypophosphite framework. Discovery of the new hypophosphites exhibiting magnetic or polar order and photoluminescence properties shows that hypophosphite perovskites offer a promising platform for generating new functional materials, including those that are light emitting, ferroelectric and multiferroic.


Assuntos
Cádmio , Cobalto , Ligantes , Fenômenos Magnéticos , Imãs
13.
Materials (Basel) ; 15(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269081

RESUMO

KMeY(PO4)2:5% Eu3+ phosphates have been synthesized by a novel hydrothermal method. Spectroscopic, structural, and morphological properties of the obtained samples were investigated by X-ray, TEM, Raman, infrared, absorption, and luminescence studies. The microscopic analysis of the obtained samples showed that the mean diameter of synthesized crystals was about 15 nm. The KCaY(PO4)2 and KSrY(PO4)2 compounds were isostructural and they crystallized in a rhabdophane-type hexagonal structure with the unit-cell parameters a = b ≈ 6.90 Å, c ≈ 6.34 Å, and a = b ≈ 7.00 Å, c ≈ 6.42 Å for the Ca and Sr compound, respectively. Spectroscopic investigations showed intense 5D0 → 7F4 transitions connected with D2 site symmetry of Eu3+ ions. Furthermore, for the sample annealed at 500 °C, europium ions were located in two optical sites, on the surface of grains and in the bulk. Thermal treatment of powders at high temperature provided better grain crystallinity and only one position of dopant in the crystalline structure. The most intense emission was possessed by the KSrY(PO4)2:5% Eu3+ sample calcinated at 500 °C.

14.
ACS Appl Mater Interfaces ; 14(1): 1460-1471, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965720

RESUMO

Hybrid organic-inorganic perovskites providing integrated functionalities for multimodal switching applications are widely sought-after materials for optoelectronics. Here, we embark on a study of a novel pyrrolidinium-based cyanide perovskite of formula (C4H10N)2KCr(CN)6, which displays thermally driven bimodal switching characteristics associated with an order-disorder phase transition. Dielectric switching combines two features important from an application standpoint: high permittivity contrast (Δε' = 38.5) and very low dielectric losses. Third-order nonlinear optical switching takes advantage of third-harmonic generation (THG) bistability, thus far unprecedented for perovskites and coordination polymers. Structurally, (C4H10N)2KCr(CN)6 stands out as the first example of a three-dimensional stable perovskite among formate-, azide-, and cyanide-based metal-organic frameworks comprising large pyrrolidinium cations. Its stability, reflected also in robust switching characteristics, has been tracked down to the Cr3+ component, the ionic radius of which provides a large enough metal-cyanide cage for the pyrrolidinium cargo. While the presence of polar pyrrolidinium cations leads to excellent switchable dielectric properties, the presence of Cr3+ is also responsible for efficient phosphorescence, which is remarkably shifted to the near-infrared region (770 to 880 nm). The presence of Cr3+ was also found indispensable to the THG switching functionality. It is also found that a closely related cobalt-based analogue doped with Cr3+ ions displays distinct near-infrared phosphorescence as well. Thus, doping with Cr3+ ions is an effective strategy to introduce phosphorescence as an additional functional property into the family of cobalt-cyanide thermally switchable dielectrics.

15.
Dalton Trans ; 51(1): 352-360, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34897339

RESUMO

Hypophosphite hybrid perovskites have recently received widespread attention due to their diverse structural and magnetic properties, negative thermal expansion and photoluminescence behaviour. Herein, we report two new three-dimensional hybrid perovskites containing unusually large organic cations, pyrrolidinium and 2-hydroxyethylammonium. We report the crystal structures of these new manganese-hypophosphite frameworks and their magnetic and optical properties. We also report the magnetic and optical properties of two previously discovered analogues, dimethylammonium and imidazolium manganese hypophosphites. Both new compounds crystallize in a monoclinic structure, space group P21/n, with ordered organic cations at room temperature. Magnetic studies show that all studied compounds are examples of canted antiferromagnets but the weak ferromagnetic contribution and the ordering temperature are significantly modulated by the type of organic cation located in the cavity of the framework. We discuss the origin of this behaviour. Upon ultraviolet excitation, all compounds exhibit broadband photoluminescence associated with the 4T1g(G) → 6A1g(S) transition of octahedrally coordinated Mn2+ ions. The position of the PL band depends on the type of organic cation, being the most blue-shifted for the imidazolium analogue (646 nm) and the most red-shifted for the pyrrolidinium counterpart (689 nm). The most interesting property of the studied hypophosphites is, however, the strong temperature dependence of the photoluminescence intensity, suggesting the possible application of these compounds in non-contact optical thermometry.

16.
Materials (Basel) ; 14(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34639954

RESUMO

This work aimed to explore the temperature-sensing performance of La2MgTiO6:Er3+ double perovskites based on thermally coupled and uncoupled energy levels. Furthermore, the crystal structure, chemical composition, and morphology of the samples were investigated by powder X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy, respectively. The most intense luminescence was observed for the sample doped with 5% Er3+. The temperature-dependent emission spectra of La2MgTiO6:5% Er3+ were investigated in the wide range of 77-398 K. The highest sensitivity of the sample was equal to 2.98%/K corresponding to the thermally coupled energy level 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 as compared to 1.9%/K, obtained for the uncoupled energy level 2H11/2 → 4I15/2 and 2H9/2 → 4I15/2. Furthermore, the 300 K luminescent decay profiles were analyzed using the Inokuti-Hirayama model. The energy transfer among Er3+ ions was mainly regulated by the dipole-dipole mechanism. The critical transfer distance R0, critical concentration C0, energy transfer parameter Cda, and energy transfer probability Wda were 9.81 Å, 2.53×1020 ions·cm-3, 5.38×10-39 cm6·s-1, and 6020 s-1, respectively.

17.
Dalton Trans ; 50(28): 9851-9857, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34195737

RESUMO

To fulfil the requirements of operating at low temperature in a harsh environment, the investigation on optical thermometers plays an increasingly important role. In this work, the influence of vanadium concentration on the capability of temperature readout by La2MgTiO6:V5+,Cr3+ luminescent thermometers was investigated for the first time. The presence of V3+ and V5+ was verified by XPS and absorption measurements. In the emission spectra, a blue-green emission region was assigned to both host and V5+ emission. Moreover, a spin-forbidden emission of Cr3+ ions was also detected. Vanadium ions in the +3 oxidation state do not exhibit luminescence, but play a role as a charge compensator. The highest emission intensity was obtained from the sample doped with 0.1% V. Besides, with increasing vanadium concentration, a redshift in the maximum position of the spectrum was observed corresponding to a movement from the greenish blue to yellowish green region in the CIE1931. It was shown that the relative sensitivity (Sr) and the temperature operating range can be easily modified by changing the concentration of vanadium ions. In particular, the outstanding relative sensitivities of 1.71% K-1 (at 187 K) and 1.96% K-1 (at 165 K) obtained from La2MgTiO6:0.1%V5+,Cr3+ and La2MgTiO6:0.05%V5+,Cr3+ demonstrated the enormous potential of this material for thermal sensing application.

18.
Dalton Trans ; 50(7): 2639-2647, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33524098

RESUMO

The recently discovered hypophosphite perovskites are promising functional materials. This contribution is devoted to the structural, thermal, dielectric, Raman and optical studies of a new hybrid organic-inorganic perovskite, [FA]Cd(H2POO)3 (FA = formamidinium, NH2CHNH2+). We also report the thermal, magnetic, dielectric and optical properties of the known perovskite [FA]Mn(H2POO)3. [FA]Cd(H2POO)3 crystallizes in a monoclinic structure, with the space group C2/c, and transforms at 190 K to another monoclinic structure, with the space group P21/n. For both compounds, the FA+ is disordered through the two-fold axis in the high-temperature (HT) phases. However, lowering of the temperature of [FA]Mn(H2POO)3 results in the complete ordering of FA+, while the organic cations still occupy two positions in [FA]Cd(H2POO)3. Raman data provide strong evidence that both FA+ cations have the same or a very similar structure and that the phase transition is triggered by an ordering of the FA+ cations. The dielectric studies confirm the order-disorder nature of the phase transition and reveal the presence of two dipolar relaxations observed in the 320-220 K range and near the phase transition temperature. The low-temperature (LT) process exhibits the classical Arrhenius-type behaviour, whereas the behaviour of the HT relaxation suggests glass-like behaviour. Magnetic studies show that [FA]Mn(H2POO)3 is an example of a canted antiferromagnet with a low ordering temperature of 2.4 K. Diffuse reflectance studies show that the Mn (Cd) hypophosphite is a wide bandgap material with Eg = 5.20 eV (5.42 eV). Upon ultraviolet excitation (266 nm), [FA]Mn(H2POO)3 exhibits reddish-orange emission at 656 nm associated with the 4T1g(G) →6A1g(S) transition of octahedrally coordinated Mn2+ ions. [FA]Cd(H2POO)3 shows significantly weaker purplish-blue emission at low temperatures composed of two bands at 425 and 443 nm, which are almost completely quenched at 160 K. For both compounds, CIE chromaticity coordinates show negligible change with temperature. Furthermore, the intensity of the observed emissions decreases quickly with increasing temperature, suggesting the possible application of [FA]Mn(H2POO)3 in non-contact optical thermometry.

19.
Materials (Basel) ; 14(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34683588

RESUMO

Herein, the structure, morphology, as well as optical properties of the powder and ceramic samples of Ba2MgWO6 are presented. Powder samples were obtained by high temperature solid-state reaction, while, for the ceramics, the SPS technique under 50-MPa pressure was applied. The morphology of the investigated samples showed some agglomeration and grains with a submicron size of 490-492 µm. The theoretical density and relative density of ceramics were calculated using the Archimedes method. The influence of sample preparation on the position, shape, and character of the host, as well as dopants emission was investigated. Sample sintering enhances regular emission of WO6 groups causing a blue shift of Ba2MgWO6 emission. Nonetheless, under X-ray excitation, only the green emission of inversion WO6 group was detected. For the ceramic doped with Eu3+ ions, the emission of both host and dopant was detected. However, for the powder efficient host to activator energy, the transfer process occurred, and only the magnetic dipole emission of Eu3+ was detected. The intensity of Nd3+ ions of Ba2MgWO6 powder sample is five times higher than for the ceramic. The sintering process reduces inversion defects and creates a highly symmetrical site of neodymium ions. The emission of Ba2MgWO6:Nd3+ consists of transitions from the 4F3/2 excited level to the 4IJ multiplet states with the dominance of the 4F3/2→4I11/2 one. The spectroscopic quality parameter and branching ratio of Nd3+ emission are presented.

20.
Dalton Trans ; 50(30): 10580-10592, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34269363

RESUMO

Coordination polymers with multiple non-centrosymmetric phases have sparked substantial research efforts in the materials community. We report the synthesis and properties of a hitherto unknown cadmium dicyanamide coordination polymer comprising benzyltrimethylammonium cations (BeTriMe+). The room-temperature (RT) crystal structure of [BeTriMe][Cd(N(CN)2)3] (BeTriMeCd) is composed of Cd centers linked together by triple dca-bridges to form one-dimensional chains with BeTriMe+ cations located in void spaces between the chains. The structure is polar, the space group is Cmc21, and the spontaneous polarization in the c-direction is induced by an arrangement of BeTriMe+ dipoles. BeTriMeCd undergoes a second-order phase transition (PT) at T1 = 268 K to a monoclinic polar phase P21. Much more drastic structural changes occur at the first-order PT observed in DSC at T2 = 391 K. Raman data prove that the PT at T2 leads to extensive rearrangement of the Cd-dca coordination sphere and pronounced disorder of both dca and BeTriMe+. On cooling, the HT polymorph transforms at T3 = 266 K to another phase of unknown symmetry. Temperature-resolved second harmonic generation (TR-SHG) studies at 800 nm confirm the structural non-centrosymmetry of all the phases detected. Optical studies indicate that BeTriMeCd exhibits at low temperatures an intense emission under 266 nm excitation. Strong temperature dependence of both one-photon excited luminescence and SHG response allowed for the demonstration of two disparate modes of optical thermometry for a single material. One is the classic ratiometric luminescence thermometry employing linear excitation in the ultraviolet region while the other is single-band SHG thermometry, a thus far unprecedented subtype of nonlinear optical thermometry. Thus, BeTriMeCd is a rare example of a dicyanamide framework exhibiting polar order, SHG activity, photoluminescence properties and linear and nonlinear optical temperature sensing capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA